
ТЕХНИЧЕСКАЯ ЧАСТЬ

GUHRING

1. Общая информация	на стр.
Режущие материалы для инструмента Gьhring	1537
Покрытия и способы обработки поверхностей	1542
Гехнология обработки	1543
И сполнение хвостовиков	1549
Таблицы перевода единиц измерения	1553
Обрабатываемые материалы	1555
2. Сверлильный инструмент	
Основные положения	1556
Размеры	1558
Сверла Ratio	1560
Гочность обработки сверлением	1568
Дентровочные сверла	1569
3. Резьбонарезной инструмент	
Основные положения DIN	1570
Диаметр резьбы и диаметр отверстия	1574
Метчики - основные положения	1576
Выявление неисправностей у метчиков	1581
Бесстружечные метчики - основные положения	1584
Выявление неисправностей у бесстружечных метчиков	1588
Резьбовые фрезы - основные положения Резьбовые фрезы - операции	1590 159 <i>4</i>
-езьоовые фрезы - операции Выявление неисправностей у резьбовых фрез	1594 1599
ъынвление неисправностеи у резьоовых фрез Плашки - основные положения	1600
лашки - основные положения Выявление неисправностей у плашек	1601
овнытение неисправностей у плашек Опросный лист для резьбового инструмента	1602
4. Фрезерный инструмент Основные положения	1604
	1604 1605
Формулы Гипы фрез и их основные области применения	1606
Габлица перевода для твердости	1607
Допуска по DIN ISO 286	1608
Эпросный лист для специальных фрез	1609
Этиет о применении	1610
5. Развертки и зенковки	
Высокопроизводительные твердосплавные развертки HR	1612
Основные положения	1614
Выбор и применение	1615
Допуски на изготовление	1617
Основные допуски ISO для длин от 1 до 120 мм DIN ISO 286 -1	1622
Предельные отклонения для отверстий в мкм	1623
Дополнительная информация по разверткам	1626
Специальные развертки с режущей кромкой из кермета	1626
Эпросный лист	1628
Инструкция по монтажу для цековок с укороченным конусом	1630
Дополнительная информация по зенковкам	1633
Зачистной инструмент EW G	1633
Специальные конструкции зачистного инструмента	1634
6. Вспомогательный инструмент	
Специальный инструмент	1636
опециальный инструмент Гочная регулировка с помощью клинового винта (GKV)	1637
гочная регулировка с помощью ютинового винта (GKV) Гочная регулировка с помощью клиновой тяги (AKV)	1638
Точная регулировка с помощью ютиновой тяги (АКV) Однолезвийные развертки	1639
JUHUUUSBUUHPIE USSBEUTKU	

Быстрорежущие стали

Мы изготавливаем инструмент только из высококачественных, тщательно отобранных марок быстрорежущей стали. В зависимости от состава сплава инструмент получает специфические качества, подобранные для каждого случая применения:

Вольфрам, Молибден: повышает термостойкость и износостойкость.

Ванадий: повышает износостойкость.

Кобальт: повышает износостойкость, увеличивает твердость, сохраняемую при повышенной температуре.

Обозначение	Обозначение	Материал №	Область применения,		Сопоставимые	 зарубежные с	тали
Gьhring	стали	(код стали)	свойства		Франция	Италия	Велико- британия
HSS	HS 6-5-2 (DMo5)	1.3343	Стандартный режущий материал для универсального применения	M2	Z 90 WDCV 06-05-04-02	HS 6-5-2	BM 2
HSCO HSS-E	HS 6- 5- 2- 5 (EMo5Co5)	1.3243	Высокая твердость при высоких температурах резания, особенно подходит для работы при плохом охлаждении	M35	Z 90 WDKCV 06-05-05-04-02	HS 6-5-2-5	BM 35
HSS-E	S 6-5-3 (EMo5V3)	1.3344	Высокая износостойкость и стабильность режущих кромок (особенно важно при развертывании)	МЗ	Z 120 WDCV 06-05-04-03	HS 6-5-3	-
M42 HSS-E	- HS 2-9-1-8	1.3247	Повышенные теплостойкость и твердость, подходит для обработки труднообрабатываемых материалов	M42	Z 110 DKCWV 09-08-04-02-01	HS 2-9-1-8	BM 42
HSS-E-PM	10-2-5-8 PM52 HS 6-5-3-8 PM30	1.3253 1.3294	Высокие твердость, теплостойкость и прочность режущих кромок, очень плотная, однородная структура	-			

Сверхтвердые режущие материалы

Благодаря как высокой твердости, так и высокой термостойкости сверхтвердые режущие материалы позволяют достигать высочайших параметров резания и производительности. Однако их недостатком является низкая прочность. Поэтому их применение рентабельно только на

жестких станках и только в специальных областях обработки. Подробную информацию о PKD и CBN Вы найдете в главе "Алмазный инструмент", наши развертки из кермета мы Вам представим в технической части в разделе "Развертки".

Обозначение Gьhring	Классификация	Область применения, свойства	Средний Размер зерна	Содержа- ние алмаза
	Мелкое зерно	Алюминий и алюминиевые сплавы системы ALSi с содержанием Si < 10%, магниевые сплавы, латунь, медь, бронза, композиционные материалы на древесной основе, превосходное качество режущих кромок, высокая износостойкость, высокое качество обработанной поверхности	2 - 4 мкм	Ок. 90%
DI/D	Среднее зерно	Универсальные марки (общее применение для чистовой обработки) Алюминиевые сплавы системы AlSi с содержанием Si <14%, медные сплавы, графит и композиционные материалы на основе графита или древесной основе, неспекаемая керамика и твердые сплавы (содержание связующего металла <15%) Высокая износостойкость, высокое качество обработанной поверхности	5 - 10 мкм	Ок. 92 %
PKD	Крупное зерно	Применение для черновой и чистовой обработки Алюминиевые сплавы системы AlSi с содержанием Si >14%, абразивные материалы, MMC, неспекаемая керамика и твердые сплавы (содержание связующего металла <15%); предельная износостойкость, высокая ударная прочность, высокая стойкость с обеспечением шероховатости обработанной поверхности от приемлемой до высококачесвтенной.	25 мкм	Ок. 94 %
	Смешанное зерно	Абразивные материалы (напр.: алюминиевые сплавы системы AISi с содержанием Si свыше 14%, MMC, композитные материалы); высокая износостойкость, высокая ударная прочность, сверхустойчивый к разрушению при хорошей защитной фаске на режущей кромке, высокая стойкость при высоком качестве обработанной поверхности	2 - 4 мкм + 25 мкм	Ок. 95 %
CBN 10	Низкое содержание СВN	Режущая кромка из CBN на твердосплавной подложке для чистовой обработки, в том числе закаленных сталей и серого чугуна; предназначен (особенно при. точении) для съема стабильного, непрерывного припуска с глубиной резания < 0,5 мм, высок. прочность на сжатие, низкая теплопроводность, высокая стойкость к абразивному износу, химическая стабильность, высокая ударная вязкость, хорошая чистота обработанной поверхности и высокая стойкость инструмента	2 мкм	50-65% Содерж. СВN
CBN 20	Высокое содержание CBN с твердосплавной подложкой	Режущая кромка из CBN на твердосплавной подложке Для обработки прежде всего серого чугуна (> 45 HRC), закаленной стали, инструментальной и штампованной стали, порошковых материалов на основе Fe-Si, сплавов на основе Ni-Cr (никелевый сплав - "Superalloys"), с упрочненной поверхностью или твердыми покрытиями на основе Co, Ni и Fe, применяется для съема стабильного, непрерывного припуска с глубиной резания от 0,5 до 1,5 мм высокая теплопроводность, высокая прочность на разрыв, высокое качество обработанной поверхности	2 мкм	80-95% Содерж. СВN
CBN 30	Высокое содержание CBN без твердосплавной подложки	Режущая кромка из цельного CBN без твердосплавной подложки для черновой обработки серого и отбеленно чугуна (> 45 HRC), закаленной стали; с высок. прочностью на разрыв, высок. износостойкостью, оч. высокой химической стабильностью, со специфической интенсивностью износа Используется в державках, сверлильном и расточном инструменте, резцах, а также торцовых фрезах с прихватами и отрицательной геометрией переднего угла	15 мкм	80-95% Содерж. СВN
Кермет	TCN 54 P15/P20	Высокая стабильность обработки резанием; для чистового инструмента, такого как развертки	< 2,5 мкм	

Основные свойства твердых сплавов для применения в при сверлении

Режущий материал - твердый сплав

Твердый сплав, как и сталь, не совсем точное общее определение всей группы материалов. Поскольку твердый сплав является композиционным материалом и может изготавливаться как минимум из двух основных компонентов, возможно получение бесконечно многих его комбинаций с различными качествами.

Производство твердого сплава

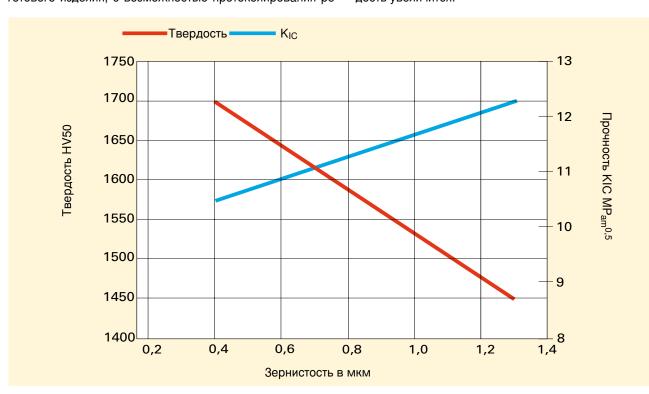
Твердые сплавы состоят из твердых соединений - карбида вольфрама (WC) и, в некоторых случаях, других карбидов - а также вязкой среды - кобальта (Co). Кобальт при этом служит цементирующей связующей средой, в которой расположены частицы твердого вещества.

Чтобы выполнить различные требования, предъявляемые к твердому сплаву в зависимости от применения, компания Gьhring предлагает на выбор более 20 различных стандартных марок твердых сплавов. Одни очень твердые, имеют большую зернистость, другие напротив, обладают большим пределом прочности и состоят из мелких зерен. Кроме этого, по запросу клиента можно разработать необходимую марку твердого сплава и изготовить ее по специальному заказу.

Чтобы изделия из твердого сплава соответствовали высоким требованиям клиентов, производство твердых сплавов оснащено ультрасовременной лабораторией. Для обеспечения соответствия качества продукции и стабильности процесса производства стандартам сертификации, здесь постоянно берутся пробы материалов, от сырья до готового изделия, с возможностью протоколирования ре-

зультатов замеров. При обработки резанием следующие свойства имеют значение:

Жесткость


Жесткость характеризует силу, необходимую для дефомирования материала. У твердых сплавов она определяется содержанием кобальта. Чем выше содержание кобальта, тем меньше жесткость материала.

Изделия из твердого сплава обладают большей жесткостью, приблизительно вдвое выше по сравнению с изделиями из стали. В связи с этим при обработке твердосплавными сверлами получают значительно более прямые отверстия, чем быстрорежущими сверлами. Однако действие этого положительного эффекта жесткости ограничено, поскольку деформация воспринимаемая сверлом, например из-за несоосности или биения, приводит к очень большим нагрузкам. Вследствие этого, более "жесткие" материалы являются чувствительными к сколу.

Твердость

Твердостью обозначается сопротивление материала проникновению другого материала. Понятно, что инструментальный материал должен быть значительно тверже, чем материал обрабатываемой детали, чтобы не подвергаться сильному износу.

Для изменения твердости твердого сплава существует много возможностей: с одной стороны, с помощью изменения содержания кобальта, с другой стороны, с помощью изменения зернистости карбидов. Если содержание кобальта при постоянном размере зерен увеличить, то твердость твердого сплава снизится. Если, напротив, при постоянном содержании кобальта уменьшить размер зерна, то твердость увеличится.

Основные свойства твердых сплавов для применения в обработке сверлением

Вязкость

Под пределом прочности характеризует сопротивление, которое материал оказывает при возрастании усилия разрыва. Высокое сопротивление разрыву является знаком "добротных" твердых сплавов, имеющих высокую ударную прочность. К сожалению, твердость и прочность являются прямопротивоположными свойствами (см. рис.).

Высокое содержание кобальта и/или крупных частиц твердого сплава являются признаком вязких твердых сплавов. Высокая вязкость необходима при возникновении в процессе обработки внезапных перегрузок или больших сил резания. Большие силы резания возникают в том случае, когда между инструментом и материалом существует высокий коеффициент трения. Он определяется шероховатостью поверхности и химическими реакциями между поверхностью инструмента и деталью. Следует отметить, что характеристика "вязкий" не означает высокое сопротивление изгибу. Характеристикой, которая значительно определяет сопротивление изгибу, является прочность режущих кромок.

Прочность режущих кромок

Прочность режущих кромок определяет сопротивление кромки сколам отдельных частиц твердого сплава, либо их соединений. Прочность на изгиб представляет собой грубую характеристику прочности кромки. На ее значение помимо вязкости влияет также величина самых длинных расстояний между зернами в нагруженном участке. При этом высокая вязкость увеличивает значение прочности на изгиб, а большие расстояния между зернами (=более крупные частицы) ее уменьшают.

Стойкость к химическим реакциям

Несмотря на то, что большинство твердых сплавов сегодня используется с покрытием, необходимо учитывать возможность химической реакции между инструментальным и обрабатываемым материалами. Покрытие на режущей кромке быстро изнашивается, поэтому может произойти реакция между твердым сплавом и обрабатываемым материалом.

Локальные разрушения, как и сквозная коррозия, имеют значительно стойкие последствия, чем повреждения на больших поверхностях. Особенно быстро при высоких температурах, преобладающих на режущей кромке, вступают в реакцию кобальт и железо. Другие металлы, такие как титан или кремний вступают в реакцию преимущественно с карбидом вольфрама. Поэтому содержание кобальта важно для характеристики химических свойств инструмента.

Выбор материала

При выборе применямого режущего материала каждый раз необходимо найти оптимальный баланс между его различными характеристиками. Именно поэтому предлагаемый выбор твердых сплавов очень велик. Для того чтобы найти подходящий твердый сплав для каждого конкретного применения, были испробованы различные системы классификации и введены стандарты, призванные облегчить выбор. Широко распространена система ISO, обозначающаяся в новой редакции 2005 г. как DIN ISO 513.

Согласно этому стандарту область применения комбинации твердого сплава и покрытия обозначается буквой, а сочетание твердости и прочности - цифрой. Меньшая цифра обозначает необходимость высокой твердости, большая - высокую потребность в прочности инструмента.

Основные группы применения твердых сплавов для инструмента Gbhring

Основная группа применения Р

Данная группа включает в себя материалы образующие длинную стружку, кроме нержавеющей и аустенитной стали. Группы применения делятся в зависимости от нагрузки при резании от 01 до 50.

Основная группа применения М

К группе М относятся аустенитная нержавеющая сталь, аустенитно-ферритная сталь и литая сталь. Группы применения делятся в зависимости от нагрузки при резании от 01 до 40. У фирмы Gühring применения Р и М реализуются твердыми сплавами группы К с соответствующими покрытиями.

Основная группа применения К

В группе К объединены все чугуны во всех его видах, в том числе и ковкий чугун. Группы применения делятся в зависимости от нагрузки при резании от 01 до 40.

Основная группа применения S

Жаропрочные высоколегированные сплавы на основе железа, никеля или кобальта, а также титановые сплавы относятся к группе S. Группы применения делятся в зависимости от нагрузки при резании от 01 до 30.

Основная группа применения N

Данная группа объединяет все несодержащие железа материалы, в особенности алюминиевые сплавы и цветные металлы. Группы применения делятся в зависимости от нагрузки при резании от 01 до 30.

Основная группа применения Н

В данной группе объединена обработка твердых закаленных сталей и отбеленного чугуна. Чугуна. Группы применения делятся в зависимости от нагрузки при резании от 01 до 30.

Многие марки твердых сплавов охватывают широкий диапазон этих основных групп обработки, особенно если применяются с покрытием. Так, например, большинство твердосплавных сверл с покрытием FIRE из программы Gühring относятся к основным группам обработки К и Р.

Отдельные марки Gьhring

В следующей таблице даны наиболее применяемые марки твердых сплавов, имеющиеся в стандартной программе поставок фирмы Gьhring. Информацию по другим маркам можно получить по запросу, более подробную инфомацию Вы найдете на сайте www.guehring-carbide.de.

В более 80% случаев применение инструмента из сплава DK460UF в комбинации с подходящим покрытием показало результаты, превосходящие результаты применения других марок твердых сплавов. Этот факт, а также постоянное наличие данного материала на складе сильно упрощают подбор инструмента. Если необходимо применить другие марки твердых сплавов, наши специалисты охотно Вас проконсультируют.

Марки	Содержание кобальта Со [М-%]	Величина зерна [мкм]	Твердость [HV]	Классификация ISO [ISO 513]	Описание
DK 460 UF	10	0,5	1620	К 20 - К 40 с покрытием: Р, М20-М40, H, S, N25	Очень широко используемая марка, в основном применяется с покрытием, обрабатывает стали, некоторые алюминиевые сплавы, чугуны, а также специальные сплавы, например, инконель. Этот сплав является основой нашей продукции.
DK 500 UF	12	0,5	1680	К25 с покрытием: Р, М, H, S, N25	Эта марка специально разработана для твердой обработки. Она отличается от DK 460 UF повышенной твердостью и сопротивлением к деформациям, и соответ. высокой точностью формы. По причине высокого содержания Со рекомендуется обязательное использование с покрытием.
DK 255 F	8	0,7	1720	К20 с покрытием: Р, М, Н, S, N20	Эта марка рекомендуется для твердой обработки, обработки высокопрочных сплавов чугуна и твердых AISi-сплавов. Возможна сухая обработка. Предпочтительно применять с покрытием.
DK120	6	1,3	1620	К15 с покрытием: N15	Прежде всего эта марка предназначена для использования с алмазным покрытием.
DK 120 UF	7	0,5	1850	K05	Особо мелкозернистая марка с высокой износостойкостью, предназначена для абсолютно жестких станков, предпочтительна для разверток.
K 55 SF	9	0,2 -0,5	1920	K10 - K30	Применяется для обработки высокоизносостойких материалов, нержавеющей стали, композиционных материалов таких, как кевлар и стеклопластики, для высокоскоростной и сухой обработки.
DK 400 N	10	0,7	1580	К35 М с покрытием: P, M, S, N35M	Высокопрочная марка для обработки жаропрочных материалов

О без покрытия

Инструменты из быстрорежущей стали или твердого сплава имеют хорошие базовые свойства и без улушения поверхности или покрытия. Кроме того, по желанию заказчика, стандартный инструмент без покрытия может использоваться как базовый инструмент для нанесения экономичного покрытия из гаммы покрытий фирмы Gühring.

Методы улучшения поверхности

Для специальных случаев применения рекомендуется улучшение поверхности, которое увеличивает износостойкость и сопротивление слипанию и уменьшает склонность к наросту. Однако, в связи с тем, что покрытия из твердого и мягкого материала показывают намного лучшие результаты, улучшение поверхности в существенно теряет свое значение.

• азотирование паром азотированные ленточки

Рекомендуется для обработки серого чугуна, алюминия с высоким содержанием Si, пластмасс, материалов с высоким содержанием перлита и т.д. Азотирование происходит различными методами, в зависимости от области применения.

обработка паром

Инструмент прошедщий обработку паром может предотвращать холодную сварку, которая образуется, например, при обработке низкоуглеродистой стали. Данное улучшение поверхности предназначено для обработки железосодержащих материалов.

Покрытия фирмы Gühring

А А-покрытие или TiAIN-покрытие

Цвет покрытия: фиолетовый

Однослойное покрытие TiAIN благодаря своей высокой твердости и химической стабильности используется на твердославном инструменте для абразивной обработки, например, для твердой и высокоскоростной обработки.

Super A-покрытие или AITiN-покрытие

Цвет покрытия: серо-фиолетовый

Хорошо заркомендовавшее себя покрытие А фирмы Gühring постоянно совершенствовалось. В результате оптимизированные структурные, химические и механические свойства покрытия Super-A имеют очень высокую твердость при высокой температуре, очень хорошую устойчивость к окислению, а также отличную сцепляемость. Это покрытие используется исключительно на твердосплавном инструменте и предазначено для обработки труднообрабатываемых материалов, например, титановых сплавов, инконеля и закаленной стали (> 52 HRC), для твердой и высокоскоростной обработки.

© С-покрытие или TiCN-покрытие

Цвет покрытия: серый

Инструмент для фрезерования и нарезания резьбы, подверженный высокой мех.нагрузке, покрывается TiCN. На основании высокой твердости и хорошей вязкости инструмент с покрытием TiCN показывает хорошие результаты при прерывистом резании.

F-покрытие или FIRE-покрытие R-покрытие или nanoFIRE-покрытие

Цвет покрытия: фиолетовый

Это многослойное покрытие TiAIN/TiN особенно часто используется на спиральных сверлах из быстрорежущей стали и твердого сплава. Оно имеет очень хорошие показатели по износостойкости при сверлении и обладает хорошей тепловой устойчивостью. Наряду с обычной обработкой с СОЖ данное покрытие используется также для MMS и сухой обработки, зачастую в комбинации с покрытием MolyGlide как дополнительное покрытие для улушения врезания и оптимальной работы в аварийном режиме.

Р- покрытие или ALCrN-покрытие

Цвет покрытия: серый металлик

Покрытие, специально адаптированное к требованиям обработки бесстружечными метчиками. Покрытие Р на основе нитрида алюминия-хрома (AlCrN) отличается более высокой стойкостью к окислению и твердостью при повышенной температуре. Результатом является высокая износостойкость и производительность. Бесстружечные метчики с покрытием Р могут работать со значительно более высокими параметрами резания и оптимально используют потенциал современных станков.

S S-покрытие или TiN-покрытие

Цвет покрытия: золотисто-желтый

Однослойное покрытие из нитрида титана является стандартным покрытием, которое может использоваться как для быстрорежущего, так и для твердосплавного инструмента. Среди прочего оно часто применяется при сверлении, нарезании резьбы и фрезеровании и имеет широкий диапазон применения при обработке стали.

M-покрытие или MolyGlide®-покрытие

Цвет покрытия: светло-серый

Molyglide представляет собой тонкое, снижающее трение покрытие для применения в случаях, когда необходимо уменьшить коэффициент трения скольжения, например, при сухой обработке или обработке MMS. Одновременно это покрытие может применяться для работы в аварийном режиме в случае отказа работы системы смазки MMS.

Сухая обработка и принцип минимального смазывания ММЅ

Важными технологическими направлениями, призванными снизить производственные расходы, являются сухая обработка и обработка ММS. Фирма Gühring интенсивно работала в данных направлениях и разрабатывала инструмент и приспособления для крепления инструмента, оптимально подходящие для этих видов обработки. При этом было особенно важно изучить термические процессы, протекающие на инструменте и на заготовке.

Основные наблюдения

Так как при сухой обработке и обработке MMS возникающая теплота резания не может отводиться так же, как при обычной обработке с охлаждением СОЖ, важно, чтобы конструкция инструмента обеспечивала: оптимизированный инструмент таким образом, чтобы

- выделение во время процесса резания меньшего количества тепла (например, за счет применения острых режущих кромок с положительным передним углом при одновременно увеличенных режимах резания),
- уменьшение трения (например, вследствие уменьшения ширины направляющих ленточек и увеличения обратного конуса сверла),
- уменьшение теплообмена между стружкой и инструментом (например, вследствии применения термостойкого твердого покрытия и полированной поверхности инструмента для уменьшения трения между стружкой и стружечной канавкой),
- уменьшение теплообмена между стружкой и заготовкой (например, благодаря быстрому отводу стружки из отверстия или с поверхности заготовки).

Влияние переднего угла на температуру в зоне резания

Для исследования данного параметра фирма Gühring изготовила три испытательных сверлильных инструмента диам. мм, для глубины сверления мм. Геометрия инструмента была идентичной, они отличались только углами подъема спирали и, соответственно, передними углами. Испытатель-

Угол подъема 0°

— f

— 55

— 50

— 55

— 50

— 45

— Угол подъема 15°

— 40

— 35

— 30

— Угол подъема 30°

— 25

— 20

— 15

— 10 мм, AlSi7

ус = 300 м/мин

ные инструменты имели передние углы 0° (т.е. прямая канавка) 15°, а также 30°. Диаметр внутренних каналов под охлаждение на всех инструментах был одинаковым.

С помощью термографической камеры была замерена и задовыделяющаяся кументирована теплота при обработке отверстия в алюминиевом сплаве AlSi7 в режиме реального времени. Использованные для этого испытательные пластины имели толщину 14,0 мм и сверлились с торцовой стороны так, чтобы оставшаяся стенка между отверстием и термографически исследованной поверхностью пластины составляла 2,0 мм. С помощью такого испытательного расположения

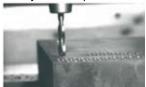
представлялась возможность качественно сравнить теплоту в зависимости от применяемого испытательного инструмента

При термографическом анализе вершины инструмента проявилась отчетливая связь между передним углом и возникающей температурой. Положительный передний угол привел к тому, что в зоне перелома стружки температура была значительно ниже, так как стружка на скрученном на 30° инструменте поворачивалась только на 60° (малый перелом), в то время, как поворот стружки на инструменте с прямыми канавками составляет 90° (большой перелом).

Возникающая в зоне перелома теплота непосредственно переходит в качестве теплоты резания в процесс. Более короткая стружка переносит - вследствие своего более короткого контакта на стружечной поверхности - меньшую теплоту трения на инструмент, что способствует более благоприятным температурным условиям.

Дополнительно высокоскоростня камера зарегистрировала прохождение стружки. На выбранных параметрах обработки vc = 300,0 м/мин и f = 0,35 мм/об. наблюдались существенные различия относительно удаления стружки и теплоты при резании. Удаление стружки, т.е. непрерывная транспортировка стружки из отверстия, улучшалось с увеличением хода спирали инструмента.

Причина этого заключается главным образом в положительной геометрии и связанным с ней улучшенным переломом стружки, что и дает в результате укороченную стружку. Эта укороченная стружка вследствие своего лучшего соотношения поверхности - объема может легче выводиться из отверстия и меньше склонна к заклиниванию в стружечной канавке.


Спиральный инструмент со своей существенно улучшенной схемой удаления стружки и сравнительно более низкой температурой при обработке в значительной степени способствует повышению надежности производственного процесса при сухой обработке и обработке MMS.

Сверла с прямыми канавками могут использоваться для обработки алюминия и чугуна преимущественно там, где необходимы повышенные требования к качеству отверстия (улучшення круглость и меньшая длина отверстия). Это связано с тем, что инструмент с прямыми канавками имеет как правило четыре направляющих фаски. Температурный уровень сверлильного инструмента с прямыми канавками, кроме того, благодаря оптимизированной, геометрической структуре каналов под охлаждение может быть снижен таким образом, что этот термический недостаток по отношению с скрученному сверлильному инструменту может быть существенно компенсирован.

Сухая обработка и принцип минимального смазывания ММЅ

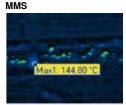
Влияние трения на температуру производственного процесса.

В следующем испытании отверстия помещались в чугун с шаровидным графитом GGG40, при этом это испытание было разделено на три этапа. Один идентичный для каждого испытания инструмент использовался для полостью сухой обработки, обработки с потоком воздуха и обработки с MMS. В случае с применяемым испытательным инструментом

речь идет об оптимизированном для обработки с MMS сверлильном инструменте диам. 8,5 мм, глубина сверления составила 42,0 мм. Параметры обработки: vc = 130,0 м/мин и f = 0,26 мм/об.

осложнить следующи операции, н-р, изготовление резьбы или развертывание.

Инструмент, испытанный во второй части испытательной серии с внутренним подводом воздуха, нагрелся на вершине сверл до 196° С, что позволяет сделать вывод о том, что воздушный поток отводит значительную часть возникающей



теплоты. При этом, отвод стружки был значительно улучшен, что в сравнении с полностью сухой обработкой доказывает, что только спиральная канавка сверлильного инструмента не достаточна для оптимального отвода стружки.

Термографическая камера зарегистрировала на обратном выходе из отверстия температуру на вершине сверла. Для этого была рассмотрена последовательность обработки семи следующих друг з другом отверстий. С первого до пятого отверстия наблюдалось повышение температуры на вершине сверла, а после пятого отверстия максимальная температура на вершине сверла при выходе из отверстия больше не изменялась (квазистационрное состояние). По этой причине была определена температура инструмента соответственно после седьмого отверстия.

Эта темпертура последовательно ниже, чем значение во время резания на вершине сверла. Измерения с помощью термоэлементов под поверхностью стружки и почти сразу за главной режущей кромкой показали, что на точке измерения может быть температура до 900° С. Но проводимое врамках данного испытания сравнение температур допускается, так как измерение производится постоянно в одно и то же время на вершине сверла.

Для инструмента с MMS, т.е. смеси воздуха с масляными каплями, при прочих одинаковых испытательных условиях на вершине сверла была замерен температура всего 145° С. Так как незначительный объем масла 30 мл/час

номинально не может способствовать охлаждению процесса обработки, необходимо исходить из того, что примесь масляных капель в воздушном потоке обусловливают значительное снижение трения. Это также доказывает - в отличие

от чистого охлаждения воздухом - увеличение скорости отвода стружки. Значительно меньшая по сравнению с чистым охлаждением воздуха температура стружки, кроме того, наглядно показывает, что масло попадает к точке измерения и улучшает прохождение стружки по стружечной поверхности благодаря лучшим фрикционным характеристикам.

Работающий полностью насухую сверлильный инструмент имел на своей вершине макс. температуру 431° С. Данная

СУХАЯ ОБРАБОТКА Стружка Инструмент Заготовка

температура для современных режущих материалов и покрытий из твердых материалов не представляет особо большой проблемы, обработка отверстий может производиться надежно полностью без СОЖ (насухую).

Но механизмы износа, диффузия и адгезия, на более высоком температурном уровне работают быстрее, что ведет к уменьшению периода стойкости инструмента. Повышенная теплоотдача может привести, в дальнейшем, к термическому растяжению заготовки, которая, в свою очередь, при несоблюдении соответствующей стратегии обработки грозит нарушением размеров с узкими допусками. Кроме того, при обработке стали это может привести к повышению твердости рамочных зон стенки отверстия, что может

Сухая обработка (обработка без СОЖ)

Сухая обработка полностью отказывается от использования СОЖ. Отсюда экономия во многих областях. Так, например, может использоваться более экономичный инструмент без каналов СОЖ. Кроме того, в станках и инструментальной оснастке исключаются дорогие элементы дляподвода СОЖ. И наконец, исключаются все затраты на СОЖ и ее утилизацию. К тому же, отпадает необходимость в очистке деталей и рабочей зоны станка от СОЖ.

Без СОЖ возникающее при обработке тепло должно быть по возможности минимальным и отводиться исключительно через стружку. В противном случае, происходит перегрев инструмента, а также заготовки, который может привести в итоге у инструмента к повышенному износу, а у заготовки к закаливанию обрабатываемой поверхности. Со стороны инструмента перегрев можно предотвратить нанесением соответствующего покрытия. Чрезмерного нагрева заготов-

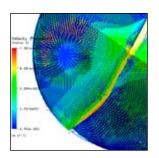
ки, в свою очередь, можно избежать только посредством хорошего отвода стружки, за что отвечает, в том числе, и геометрия инструмента. Короткая стружка и большие стружечные канавки с гладкой поверхностью - если необходимо, покрытие MolyGlide - это сущестующие для этого методы решения.

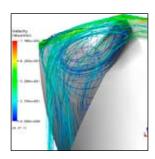
При сухой обработке возможно охлаждение воздухом. В этом случае применяется инструмент с каналами под охлаждение, через которые воздух поступает в отверстие. Воздух в этом случае не только охлаждает инструмент и заготовку, а при соответствующем давлении также выводит стружку из зоны резания.

Впрочем, сухая обработка и высокоскоростная обработка не исключают друг друга - как могло показаться вначале. Конструкция современных твердосплавных сверл и наличие покрытий позволяет производить т.н. обработку Dry HSC - сухую высокоскоростную обработку, которая сочетает в себе преимущества обеих тенденций в определенных случаях применения.

Принцип минимального смазывания MMS

Среда MMS представляет собой смесь воздуха и СОЖ, которая содержит небольшой процент смазывающих компонентов.


Раньше технология смазки с минимальным количеством смазочных средств использовалась, как правило, по собственной инициативе пользователей для экономии средств. При этом, зачастую, брался инструмент для обработки с охлаждением и просто подгонялся под условия работы с MMS. Но при таком подходе очень быстро наступал предел производительности инструмента и стало ясно, что обычное замещение СОЖ не является целенаправленным действием.


Профессиональный подход при создании инструмента для MMS обеспечивает сегодня значительное увеличение производительности при одновременном сохранении надежности производственного процесса. Определяющие для производительности и надежности свойства сверлильного инструмента приводятся при этом в соответствие со специальными требованиями технологии MMS, начиная от лезвия, через стружечные канавки и до концевой части хвостовика. Сюда относится наряду с выбором твердого сплава, также и специальная геометрия инструмента, покрытие и структура концевой части хвостовика на сверлах с MMS.

Для оптимизации сверл по технологии MMS на фирме Gühring все интенсивнее находит применение метод конечных элементов (FEM). FEM обеспечивает замер и оптимизацию инструмента еще на стадии конструирования Стружечная канавка в зоне непосредственно за лезвием имеет задачу так сформировать стружку, чтобы она ломалась как можно мельче. В задней зоне ее задачей является максимально быстрый отвод стружки. Эти задачи аналогичны для обработки с охлаждением, сухой обработки и MMS. Для MMS и сухой обработки кроме того, очень важно противопоставить стружке в задней зоне минимальное фрикционное сопротивление для обеспечения безостановочной транспортировки. Этому способствует оптимизированный профиль канавки, а также специально выравненная поверхность этой канавки.

Стружечная канавка для ММЅ

С помощью уже упомянутого анализа FEM можно имитировать сопротивление потока по канавке со стружкой, если в данном случае известны оптимизированные формы канавок для различных классов материалов. На нижеследующем рисунке можно увидеть оптимизированную под прохождение потока форму канавки и пиковое построение, которое обеспечивает благодаря оптимизированному прохождению пиковой зоны и канавки посредством аэрозоли MMS оптимальный вывод стружки и также способствует тому, чтобы снизить температурную нагрузку на режущую кромку.

Дополнительно облегчает, и тем самым, увеличивает надежность обработки, наличие специализированного покрытия для принципа MMS. Фирма Gühring достигает этого благодаря нанесению двойного покрытия, которое состоит из твердого слоя с дополнительным мягким покрытием MolyGlide. Испытания показывают, что скорость отвода стружки инструментом с покрытием MMS значительно выше, чем у обычного инструмента.

Подвод СОЖ при MMS

Так как при минимальном смазывании работа ведется с очень незначительным объемом масла, подвод этого небольшого объема смеси к режущей кромке имеет чрезвычайное значение. При этом, геометрической конструкции хвостовика инструмента и крепежных элементов отводится центральная роль.

Сухая обработка и принцип минимального смазывания ММЅ

Для учета требований по производительности и надежно- В интервальном коррозионном испытании в тумане изучаконструкцию торца хвостовика сверла и каналов подвода время испытания в течение одного часа с интервалами 5 сож.

очень важным конструкционная реализация четырех основ- лучен следующий результат: ных требований:

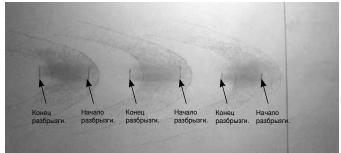
- Предотвращение образования мертвых зон, которые тренней зоне HSK могут привести к возможному осаждению (скапливанию
- Создание герметичной передаточной поверхности между концевой частью хвостовика и перегрузочным винтом с целью недопущения отклонения потока СОЖ в зажимную зону патрона или внутреннюю зону HSK (предотвращение приклеивания стружки, что может привести при последующей смене инструмента с торцовому биению).
- Простое обслуживание
- Экономичное изготовление

Технологии, использованные для конструкторского решения по концевой части хвостовика для MMS, основываются наряду с испытаниями на разбрызгивание также и на компьютерных имитационных программах. Особенно эффективной технологией зарекомендовало себя соединение CAD-CFD. CFD (Computational Fluid Dynamics / вычислительня гидродинамика) предназначена для определения полей прохождения потока. Окончательный выбор соответствующей концевой части хвостовика подтверждается коррозионным испытанием в тумане.

Посредством CAD-CFD и коррозионного испытания в тумане фирма Gühring провела исследование четырех типов

хвостовиков и соответствующих регулировочных винтов на производительность:

- 1. Плоская концевая часть хвостовика без паза с плоским винтом (на рис. слева)
- 2. Плоская концевая часть хвостовика с серповидным пазом для соединения обоих каналов под охлаждение с плоским винтом (второй слева)
- 3. Конусный концевик с круглым пазом и конусным винтом (второй справа)
- 4. Ступенчатая конец часть хвостовика (лабиринтное уплотнение) без соединительного паза с соответствующим винтом (вкл. приспособление для поворота для ориентации каналов под охлаждение, справа)


сти процесса обработки отверстий с системой минималь- лись различные концевики хвостовиков на осаждение в ного смазывания MMS, фирма Gühring детально изучила зоне зажима хвостовика инструмента и внутри HSK. Во сек. для разбрызгивания при частоте оборотов шпинделя 10.000 об/мин. и 2 сек. работы насухую при остановленном Исходя из незначительного объема смеси представляется шпинделе для четырех исследованных концевиков был по-

для 1. и 2.: Сильное загрязнение масла с зоне зажима и вну-

для 3. и 4.: нет загрязнения масла в зоне зажима и внутренней зоне HSK.

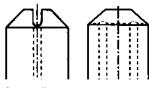
Конусная концевая часть хвостовика и хвостовик с лабиринтным уплотнением показали таким образом наилучшую герметичность.

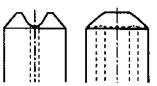
Во втором испытании сравнивались различные типы хвостовиков на время срабатывания и истинности объема подачи передаваемой среды. Труба со шлицами была установлена наклонно в рабочую зону станка. В шлиц был вставлен инструмент. Во время перемещения по осям Z\Y включалась и выключалась подача MMS. Внутреннее пространство трубы было выложено промокательной бумагой, которая принимала поток СОЖ. После этого бумагу вынимали для исследования картины разбрызгивания.

Разложенная на ровной поверхности промокательная бумага показывает картину разбрызгивания в параболическом виде. Посредством анализа картины разбрызгивания при начале испытания и его завершении, при одновременном рассмотрении сигнала позиционного регулятора осей станка, можно сделать вывод о времени срабатывания различных конструкций концевой части хвостовика.

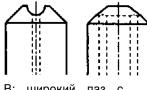
Здесь обнаружились существенные различия в работе различных конструкций концевика. При этом, на основании объема разбрызгиваемой среды, которая показана на более жирной картине разбрызгивания, можно сделать заключение о передаваемом в период разбрызгивания объеме среды. Используя новый измерительный прибор MQL-Check, фирма Gühring теперь имеет возможность анализировать характеристики объемной производительности аэрозоли MMS относительно количества и времени срабатывания. Этот прибор предоставляет пользователю надежные данные для согласования давления воздуха и содержания СОЖ в аэрозоли MMS с производственным процессом.

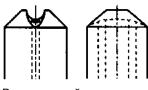
В обоих анализах (жирность и время срабатывания) конусная концевая часть хвостовика и концевик с лабиринтным уплотнением выглядели предпочтительнее вариантов с плоской концевой частью. Для других испытаний и оптимизаций в последующем использоваласть только конусная концевая часть и концевая часть с лабиринтным уплотнением.


Так, как в случае с прохождением потока речь идет о векторном изображении, то схему прохождения потока можно оценивать по направлению потока. Для этого векторы скорости исследуются по прямому и обратному прохождению. Каждое вихревое образование имеет направление потока вперед и назад. В мертвых зонах это часто приводит к завихрениям. При этом для одно- и двухканальных систем может быть дана принципиально разная оценка.


Посредством анализа СFD исследовалась форма и размер соединительного шлица на концевой части хвостовика. Изображение рядом показывает профиль прохождения потока внутри соединения "концевая часть хвостовика - регулировочный винт"

на конусном концевике. Исследовались различные формы шлицев:


В то время, как для одноканальных систем мертвые зоны ведут к тому, что среда низкую скорость прохождения потока в вихре прибивает к стенке и, таким образом, расслаивается, мертвые зоны для двухканальных систем (теневые "шлирен"-системы) означают пространство, которое необходимо заполнять перед тем, как среда сможет двигаться дальше. На основании составленных схем прохождения потока концевая часть хвостовика В с конусной концевой частью и широким пазом с круглым основанием канавки в соединительном шлице в этом отношении показала себя как оптимальное решение.


А: узкий паз с круглым основанием

С: широкий паз с кругловыпуклым основанием

В: широкий паз с круглым основанием

D: широкий паз с выпуклым основанием

Анализ обоих вышеописанных требований "Простое обслуживание" и "Экономичное изготовление" представил аналогичную картину. Нижеследующая показывает анализ в этом отношении, при этом данные относятся соответственно к концевой части хвостовика соответствующему винту. Определяющие обеспечения надежности производства характеристики "Небольшие мертвые зоны" и "Герметичность" являются исключительными критериями для обеих версий с плоскими концевыми частями хвостовика. Таким образом, предпочтительной концевой частью хвостовика можно считать конусную концевую часть с широким пазом и круглым основанием канавки.

Для этих форм паза были также разработаны схемы разбрызгивания, которые имели тенденцию к решению В. Но различия были предельными, анализ CFD, напротив, показал ясную картину.

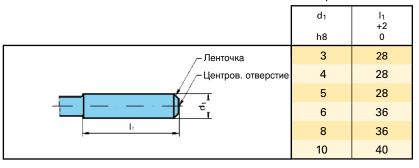
Исполнение хвостовика	Обслуживание	Экономичное изготовление	Снижение числа мертвых зон	Герметичность
Плоский без шлица	++	++	-	-
Плоский с шлицем	++	+	-	-
Торец с конической фаской и шлицем	++	+	+	++
Ступенчатый торец с лабиринтным уплотнением	-	-	++	++

Система минимального смазывания MMS фирмы Gühring

Другим, решающим критерием для надежной работы инструмента с принципом минимального смазывания MMS, является безупречная сборка системы. Решение фирмы Gühring предусматривает, в данном случае, новую разработку системы подачи MMS с одной переходной втулкой, с вклеенной тонкостенной нержавеющей трубкой и специальным установочным винтом.

Встроенная в обычные системы MMS трубка вследствие своей высокой гибкости и небольшой термической устойчивости лишь условно пригодна для надежного монтажа. Поэтому Gühring использует тонкостенную нержавеющую трубку, которая не имеет этих недостатков. Ее большой внутренний диаметр одновременно обеспечивает лучшие условия прохождения потока. Необходимая радиальная упругость встроенной в зажимном патроне переходной втулки обеспечивается тем, что она вклеивается не по всей длине, а в основании только на несколько миллиметров по осевой длине. В месте склейки отверстие увеличено. Кроме того, система Gühring MMS предусматривает доступность со стороны торца хвостовика, здесь установлен шестигранник, тем самым, задается осевая регулировка.

Все предложенные конструктивные параметры для надежной передачи с MMS и создания инструмента с MMS фирма Gühring разработала для своей общей программы по инструменту и, тем самым, гарантирует, что операции с MMS будут возможны с твердосплавным инструментом и будут обеспечивать надежность произв.процесса. Наша программа GM 300 также включает в себя державки, зажимные приспособления и оснастку, которые специально разработаны для требований по обработке с MMS.



Цилиндрические хвостовики для инструмента из быстрорежущей стали, DIN 1835-1 (фрагмент)

Форма А, гладкая

Размеры в мм

d ₁	l ₁ +2
h8	0
12	45
16	48
20	50
25	56
32	60
40	70

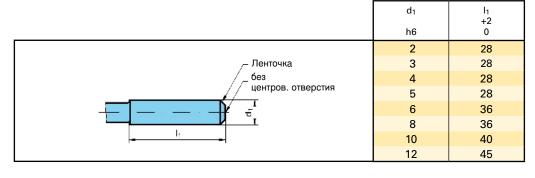
d ₁	l ₁ +2
h8	0
50	80
63	90

Форма В, с лыской

Размеры в мм

	d1 h6	b1 +0,05 0	e1 0 -1	h1 h13	l1 +2 0	l2 +1 0	центров. отверстия Форма R DIN 332 часть 1
с одной лыской d1 = 6 20 мм	6	4,2	18	4,8	36	-	1,6 x 2,5
45° 1 ^{3°} 1 0 / Ленточка	8	5,5	18	6,6	36	-	1,6 x 3,35
- Центров. отверстие	10	7	20	8,4	40	-	1,6 x 3,35
= = = = = = = = = = = = = = = = = = = =	12	8	22,5	10,4	45	-	1,6 x 3,35
11		10	24	14,2	48	-	2 x 4,25
	20	11	25	18,2	50	-	2,5 x 5,3
с двумя лысками с ₁ для d1 = 25 63 мм b ₂ Центров.	25	12	32	23	56	17	2,5 x 5,3
аб° т 1, отверстие	32	14	36	30	60	19	3,15 x 6,7
	40	14	40	38	70	19	3,15 x 6,7
- F	50	18	45	47,8	80	23	3,15 x 6,7
1, - Ленточка	63	18	50	60,8	90	23	3,15 x 6,7

Форма D, с резьбовым хвостовиком


	h8	C	З Предельн. отклонения	a	Предельн. отклонения	11 +2 0	+2 0	центров. отверстия Форма R DIN 332 часть 1
	6	5,9	0 -0,1	5,087	0 -0,1	36	10	1,6 x 2,5
5	10	9,9	0 -0,1	9,087	0 -0,1	40	10	1,6 x 3,35
- I ₁	12	11,9	0 -0,1	11,087	0 -0,1	45	10	1,6 x 3,35
Вид Z (изображено в разрезе) Профиль резьбы	16	15,9	0 -0,1	15,087	0 -0,1	48	10	2 x 4,25
по DIN ISO 228 часть 1 55°	20	19,9	0 -0,15	19,087	0 -0,15	50	15	2,5 x 5,3
	25	24,9	0 -0,15	24,087	0 -0,15	56	15	2,5 x 5,3
ਸੂ ਨੂੰ R 0174/	32	31,9	0 -0,15	31,087	0 -0,15	60	15	3,15 x 6,7

Цилиндрические хвостовики для сверл и концевых фрез из твердого сплава DIN6535

Форма НА, гладкая

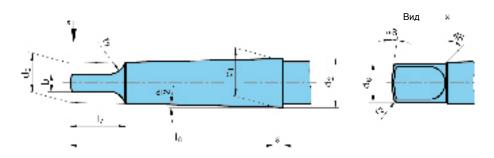
Размеры в мм

d ₁	l ₁ +2
h6	0
14	45
16	48
18	48
20	50
25	56
32	60

Форма НВ, с лыской

Размеры в мм

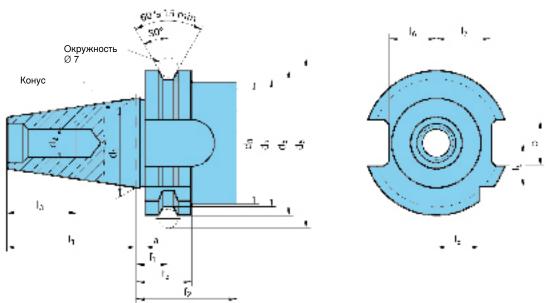
	d1 h6	b1 +0,05 0	e1 0 -1	h1 h11	l1 +2 0	l2 +1 0
с одной лыской	6	4,2	18	5,1	36	_
d = и мм	8	5,5	18	6,9	36	_
45° + 1 / 6e3	10	7	20	8,5	40	-
	12	8	22,5	10,4	45	_
	14	8	22,5	12,7	45	_
- j εj	16	10	24	14,2	48	_
11	18	10	24	16,2	48	_
- "	20	11	25	18,2	50	_
с двумя лысками d = и мм		12	32	23	56	17
		14	36	30	60	19


Форма НЕ, с наклонной лыской, без каналов под СОЖ*

* Исполнение: цилиндрические хвостовики согласно DIN6535 выполняются
без или с каналами под СОЖ. Исполнения для различного инструмента, а
также габаритные размеры и обозначения по положению каналов под СОЖ
содержатся в соответствующих стандартах.

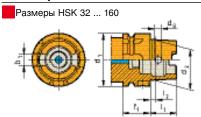
d1 h6	(b2) ≈	(b3)	h2 h11	(h3)	l1 +2 0			r2 мин.
6	4,3	-	5,1	-	36	25	18	1,2
8	5,5	_	6,9	-	36	25	18	1,2
10	7,1	_	8,5	-	40	28	20	1,2
12	8,2	_	10,4	_	45	33	22,5	1,2
14	8,1	-	12,7	-	45	33	22,5	1,2
16	10,1	_	14,2	-	48	36	24	1,6
18	10,8	-	16,2	-	48	36	24	1,6
20	11,4	-	18,2	-	50	38	25	1,6
25	13,6	9,3	23,0	24,1	56	44	32	1,6
32	15,5	9,9	30,0	31,2	60	48	35	1,6
	h6 6 8 10 12 14 16 18 20 25	h6 ≈ 6 4,3 8 5,5 10 7,1 12 8,2 14 8,1 16 10,1 18 10,8 20 11,4 25 13,6	h6 ≈ 6 4,3 - 8 5,5 - 10 7,1 - 12 8,2 - 14 8,1 - 16 10,1 - 18 10,8 - 20 11,4 - 25 13,6 9,3	h6 ≈ h11 6 4,3 - 5,1 8 5,5 - 6,9 10 7,1 - 8,5 12 8,2 - 10,4 14 8,1 - 12,7 16 10,1 - 14,2 18 10,8 - 16,2 20 11,4 - 18,2 25 13,6 9,3 23,0	h6 ≈ h11 6 4,3 - 5,1 - 8 5,5 - 6,9 - 10 7,1 - 8,5 - 12 8,2 - 10,4 - 14 8,1 - 12,7 - 16 10,1 - 14,2 - 18 10,8 - 16,2 - 20 11,4 - 18,2 - 25 13,6 9,3 23,0 24,1	h6 ≈ h11 +2 0 6 4,3 − 5,1 − 36 8 5,5 − 6,9 − 36 10 7,1 − 8,5 − 40 12 8,2 − 10,4 − 45 14 8,1 − 12,7 − 45 16 10,1 − 14,2 − 48 18 10,8 − 16,2 − 48 20 11,4 − 18,2 − 50 25 13,6 9,3 23,0 24,1 56	h6 ≈ h11 +2 0 -1 6 4,3 - 5,1 - 36 25 8 5,5 - 6,9 - 36 25 10 7,1 - 8,5 - 40 28 12 8,2 - 10,4 - 45 33 14 8,1 - 12,7 - 45 33 16 10,1 - 14,2 - 48 36 18 10,8 - 16,2 - 48 36 20 11,4 - 18,2 - 50 38 25 13,6 9,3 23,0 24,1 56 44	h6 ≈ h11 -2 0 номин. размер 6 4,3 - 5,1 - 36 25 18 8 5,5 - 6,9 - 36 25 18 10 7,1 - 8,5 - 40 28 20 12 8,2 - 10,4 - 45 33 22,5 14 8,1 - 12,7 - 45 33 22,5 16 10,1 - 14,2 - 48 36 24 18 10,8 - 16,2 - 48 36 24 20 11,4 - 18,2 - 50 38 25 25 13,6 9,3 23,0 24,1 56 44 32

Конус Морзе DIN 228 часть 1 (фрагмент)


Форма В, конус Морзе с лапкой

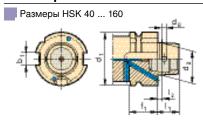
Размеры в мм

Хвостовик по DIN228 Форма В Размер	Предел отклон		b	d1	d2 ≈	d5 ≈	d6 макс.	I6 0 -1	17 макс.	r2 макс.	r3 ≈	
MK 1	3,5	+1,4 0	5,2	12,065	12,2	9,0	8,7	62	13,5	5	1,2	1°25′50′′
MK 2	5,0	+1,4 0	6,3	17,78	18,0	14,0	13,5	75	16	6	1,6	1°26′16′′
MK 3	5,0	+1,7	7,9	23,825	24,1	19,1	18,5	94	20	7	2	1°29′15′′
MK 4	6,5	+1,9 0	11,9	31,267	31,6	25,2	24,5	117,5	24	8	2,5	1°30′26′′
MK 5	6,5	+1,9 0	15,9	44,399	44,7	36,5	35,7	149,5	29	10	3	1°30′26′′

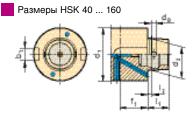

Хвостовики с конусом 7:24 для автоматической смены инструмента, DIN 69871(фрагмент) Форма А, с трапецевидной канавкой, без сквозного отверстия

Nº	а	b	d1	d2	d5	d6	d7	d8	f1	f2	f	l1	13	15	16	17
конуса	±0,1	H12			±0,05	0 -0,1	0 -0,5	макс.	±0,1	мин.	0 -0,1	0 -0,3	мин.	0 -0,3	0 -0,4	0 -0,4
30	3,2	16,1	31,75	M12	59,3	50,00	44,30	45	11,1	35	19,1	47,8	24	15	16,4	19
40	3,2	16,1	44,45	M16	72,3	63,55	63,55	50	11,1	35	19,1	68,4	32	18,5	22,8	25
45	3,2	19,3	57,15	M20	91,35	82,55	82,55	63	11,1	35	19,1	82,7	40	24	29,1	31,3
50	3,2	25,7	69,85	M24	107,25	97,50	97,50	80	11,1	35	19,1	101,75	47	30	35,5	37,7

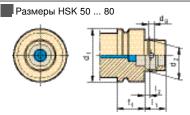
Обзор хвостовиков HSK ISO 12164 - 1/ DIN 69893


Форма A DIN69893 часть 1

Размеры HSK 32 ... 160


Форма E DIN69893 часть 5 Размеры HSK 25 ... 63

Форма В DIN6983 часть 2



Форма D DIN69893 часть 2

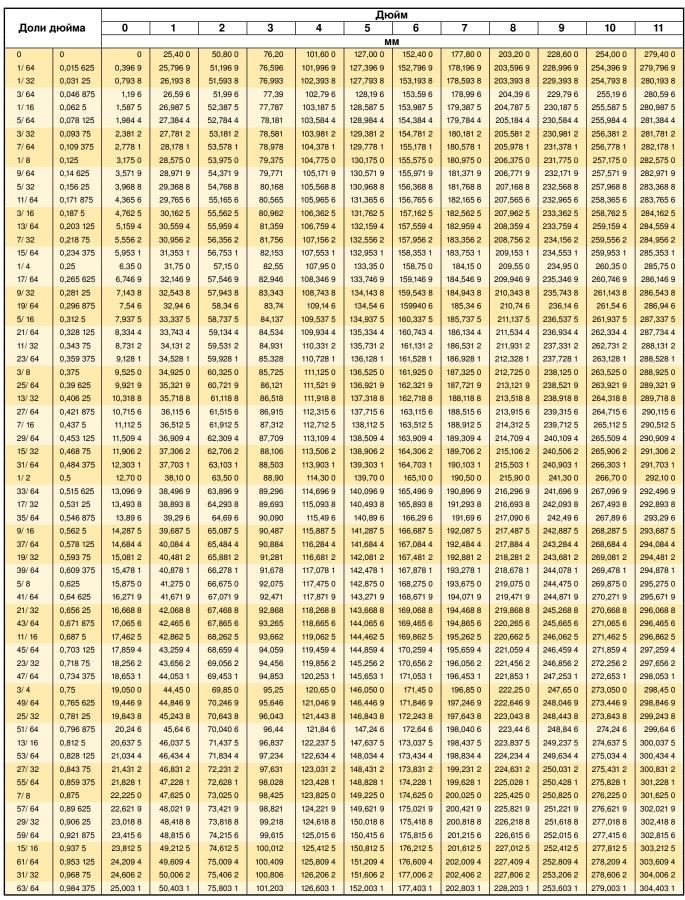
Форма C DIN69893 часть 1

Форма F DIN69893 часть 6

Полый конус хвостовика для авт. смены инструмента с зажимным пазом и позиц. пазом. Возможна ручная смена инструмента благодаря отверстию доступа в конусе, у формы В из-за отсутствия пазов на конце конуса необходимо осуществлять соответствующую установку внутреннего контура (захватывающая торцев. шпонка). Момент вращения переносится силовым и геометрическим замыканием.

Полый конус хвостовика для ручн. смены инструмента. Смена инстр-та благодаря отверстию доступа в конусе, у формы D необходимо осуществлять соответств. установку внутр. контура (захватывающая торцев. шпонка) из-за отсутствия пазов на конце конуса. Момент вращения переносится силовым и геометрич. замыканием.

Полый конус хвостовика для авт. смены инструмента. Момент вращения переносится силовым замыканием. Исполнение отверстия доступа согласно DIN69893 - 1 по согласованию.


					Форма Н	K A C E				
Номинальное :	значені	ие								
d_1				d ₂	I ₁	l ₂	f ₁	f ₅	d ₈	b ₁
mm				mm						
25				19,000	13	2,5	10	-	-	-
32				24,007	16	3,2	20	10,0	4,0	7,05
40			E	30,007	20	4,0	20	10,0	4,6	8,05
50				38,009	25	5,0	26	12,5	6,0	10,54
63				48,010	32	6,3	26	12,5	7,5	12,54
80				60,012	40	8,0	26	16,0	8,5	16,04
100	^	_		75,013	50	10,0	29	16,0	12,0	20,02
125	A			95,016	63	12,5	29	-	-	25,02
160				120,016	90	16,0	31	-	-	30,02

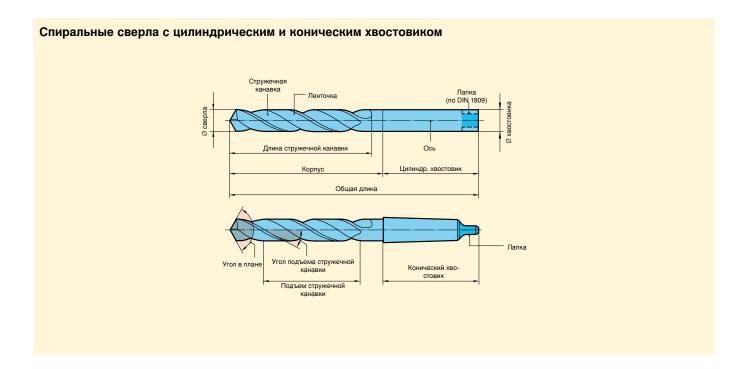
					Форма HSK B	DF			
Номинальное зн	ачени	е							
d ₁				d ₂	I ₁	l ₂	f ₁	d ₈	b ₁
mm				mm	mm	mm	mm	mm	mm
25				-	-	-	-	-	-
32				-	-	-	-	-	-
40				24,007	16	3,2	20	4,0	10
50				30,007	20	4,0	26	4,6	12
63			F	38,009	25	5,0	26	6,0	16
80	В	D		48,010	32	6,3	26	7,5	18
100				60,012	40	8,0	29	8,5	20
125				75,013	50	10,0	29	12,0	25
160				95,016	63	12,5	31	12,0	32

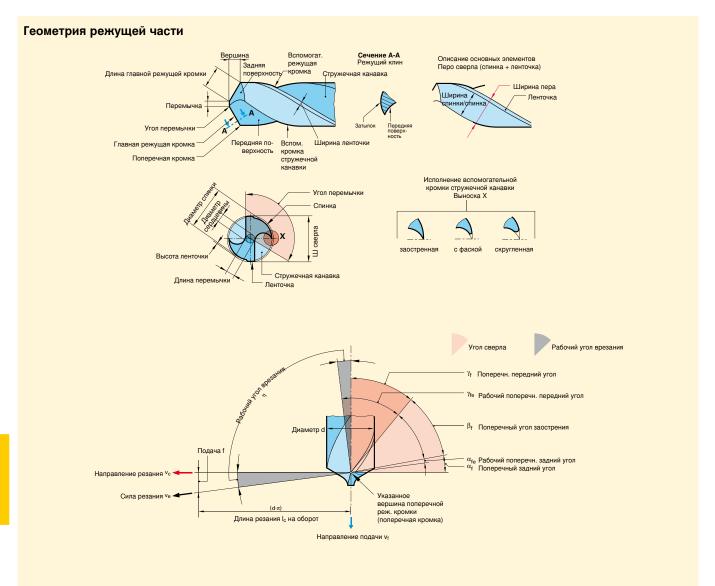
Частота вращения, наряду с длиной вылета инструмента из шпинделя, играет решающую роль при возникновении дисбаланса сил, действующих на инструмент. Поэтому в рамках стандартизации приняты следующие максимальные значения скорости вращения для различных размеров хвостовиков HSK:

HSK-A/C 32	до 50000 об/мин
HSK-A/C 40	до 42000 об/мин
HSK-A/C 50	до 30000 об/мин
HSK-A/C 63	до 25000 об/мин
HSK-A/C 80	до 20000 об/мин
HSK-A/C 100	до 16000 об/мин

От 1/64 до 11 63/64

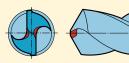
¹ дюйм = 25,4 мм, см. DIN 4890 (издание 2/75)

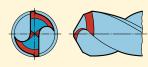

От 97 до 1/ от А до Z


Американский стандарт	Доли дюйма (Десятичный)	Американский стандарт	Доли дюйма (Десятичный)	Буквенный формат	Доли дюйма (Десятичный)
97	0.0059	48	0.0760	A	0.2340
96	0.0063	47	0.0785	В	0.2380
95	0.0067	46	0.0810	С	0.2420
94	0.0071	45	0.0820	D	0.2460
93	0.0075	44	0.0860	E	0.2500
92	0.0079	43	0.0890	F	0.2570
91	0.0083	42	0.0935	G	0.2610
90	0.0087	41	0.0960	Н	0.2660
89	0.0091	40	0.0980	I	0.2720
88	0.0095	39	0.0995	J	0.2770
87	0.0100	38	0.1015	K	0.2810
86	0.0105	37	0.1040	L	0.2900
85	0.0110	36	0.1065	M	0.2950
84	0.0115	35	0.1100	N	0.3020
83	0.0120	34	0.1110	0	0.3160
82	0.0125	33	0.1130	P	0.3230
81 80	0.0130 0.0135	32 31	0.1160 0.1200	Q R	0.3320 0.3390
79	0.0135	30	0.1285	S	0.3480
79	0.0145	29	0.1360	T T	0.3580
77	0.0180	28	0.1300	ΰ	0.3680
76	0.0200	27	0.1440	V	0.3770
75	0.0210	26	0.1470	w	0.3860
74	0.0225	25	0.1495	x x	0.3970
73	0.0240	24	0.1520	Y	0.4040
72	0.0250	23	0.1540	Z	0.4130
71	0.0260	22	0.1570		
70	0.0280	21	0.1590		
69	0.0292	20	0.1610		
68	0.0310	19	0.1660		
67	0.0320	18	0.1695		
66	0.0330	17	0.1730		
65	0.0350	16	0.1770		
64	0.0360	15	0.1800		
63	0.0370	14	0.1820		
62	0.0380	13	0.1850		
61	0.0390	12	0.1890		
60	0.0400	11	0.1910		
59	0.0410	10	0.1935		
58	0.0420	9	0.1960		
57	0.0430	8 7	0.1990		
56	0.0465		0.2010		
55 54	0.0520	6 5	0.2040		
54	0.0550 0.0595	5 4	0.2055 0.2090		
52	0.0635	3	0.2130		
52	0.0635	2	0.2130		
50	0.0700	1	0.2210		
49	0.0730	,	J.2200		

Новые обозначения материалов (выборочные марки)

Мат. Nº	Обозначение старое	Обозначение новое	Мат. Nº	Обозначение старое	Обозначение новое	Мат. Nº	Обозначение старое	Обозначение новое	Мат. Nº	Обозначение старое	Обозначение новое
0.6010	GG10	EN-GJL-100	1.0728	60 S 20	-	1.4436	X5CrNiMo 17 13 3	X3CrNiMo17-13-3	1.7043	-	38Cr4
0.6020	GG20	EN-GJL-200	1.0736	9 SMn 36	11SMn37	1.4438	X2CrNiMo 18 16 4	X2CrNiMo18-15-4	1.7147	20 MnCr 5	20MnCr5
0.6025	GG25	EN-GJL-250	1.0737	9 SMnPb 36	11SMnPb37	1.4460	X4CrNiMo 2752	X3CrNiMoN27-5-2	1.7149	20 MnCrS 5	20MnCrS5
0.6035	GG35	EN-GJL-350	1.0756	35 SPb 20	35SPb20	1.4462	X2CrNiMoN 2253	X2CrNiMoN22-5-3	1.7176	55 Cr 3	55Cr3
0.7050	GGG 50	EN-GJS - 500-7	1.0757	45 SPb 20	46SPb20	1.4509	X6CrTiNb 18	X2CrTiNb18	1.7182	27 MnCrB 5 2	27MnCrB5-2
0.7070	GGG70	EN-GJS - 700-2	1.0760	-	38SMn26	1.4510	X6CrTi 17	X3CrTi17	1.7185	33 MnCrB 5 2	33MnCrB5-2
0.8035	GTW35	EN-GJMW -350-4	1.0761	_	38SMnPb26	1.4511	X6CrNb 17	X3CrNb17	1.7189	39 MnCrB 6 2	39MnCrB6-2
0.8155 0.8170	GTS55 GTS70	EN-GJMB -550-4 EN-GJMB -700-2	1.0762	_	44SMn28 44SMnPb28	1.4512	X6CrTi 12 X1CrTi 15	X2CrTi12 X2CrTi17	1.7213 1.7218	25 CrMoS 4 25 CrMo 4	25CrMoS4 25CrMo4
1.0022	St 01Z	_ EN-GJIVIB -700-2	1.0763	_	DC06 [Fe P06]	1.4521	X2CrMoTi 18 2	X2CrMoTi18-2	1.7219	_ CINIO 4	26CrMo4-2
1.0022	St 33	S 185	1.1103	EStE 255	S255NL1	1.4522	X2CrMoNb 18 2	X2CrMoNb18-2	1.7219	34 CrMo 4	34CrMo4
1.0039	St 37-2	S 235 JRH	1.1105	EStE 315	S315NL1	1.4532	X7CrNiMoAl 15 7	X8CrNiMoAl ₁₅₋₇₋₂	1.7225	42 CrMo 4	42CrMo4
1.0044	St 44-2	S 275 JR	1.1121	Ck 10	C10E	1.4541	X6CrNiTi18 10	X6CrNiTi18-10	1.7226	34 CrMoS 4	34CrMoS4
1.0050	St 50-2	E295	1.1141	Ck15	C15E	1.4542	X5CrNiCuNb 17 4	X5CrNiCuNb16-4	1.7227	42 CrMoS 4	42CrMoS4
1.0060	St 60-2	E335	1.1151	Ck 22	C22E	1.4550	X6CrNiNb 18 10	X6CrNiNb18-10	1.7228	50 CrMo 4	50CrMo4
1.0070	St 70-2	E 360	1.1158	Ck 25	C25E	1.4558	X2NiCrAlTi 32 20	X2NiCrAlTi32-20	1.7264	20 CrMo 5	20CrMo5
1.0114	St 37 – 3U	S235 J0	1.1170	28 Mn 6	28Mn6	1.4567	X3CrNiCu 18 9 X	X3CrNiCu18-9-4	1.7321	20 MoCr 4	20MoCr4
1.0226	St 02 Z	DX 51 D	1.1178	Ck 30	C30E	1.4568	X7CrNiAl 17 7	X7CrNiAl17-7	1.7323	20 MoCrS 4	20MoCrS4
1.0242	StE 250 -2Z	S250GD	1.1181	Ck 35	C35E	1.4571	-	X6CrNiMoTi17-12-2	1.7333	22 CrMoS 3 5	22CrMoS3-5
1.0244	StE 280 -2Z	S280GD	1.1186	Ck 40	C40E	1.4577	X3CrNiMoTi 2525	X3CrNiMoTi25-25	1.7335	13 CrMo 4 4	13CrMo4-5
1.0250	StE 320 -3Z	S320GD	1.1191	Ck 45	C45E	1.4592	X1CrMoTi 29 4	X2CrMoTi29-4	1.7362	12 CrMo 19 5	12CrMo19-5
1.0301	C 10	_	1.1203	Ck 55	C55E	1.4713	X10CrAl 7	X10CrAlSi7	1.7380	10 CrMo 9 10	10CrMo9-10
1.0302	C 10 Pb	DV 54 D	1.1206	Ck 50	C50E	1.4724	X10CrAl 13	X10CrAlSi13	1.7383	_	11 CrMo9-10
1.0306	St 06 Z	DX 54 D	1.1221	Ck 60	C60E	1.4742	X10CrAl 18	X10CrAISi18	1.7779	E0 Cv) 4	20CrMoV13-5-5
1.0312 1.0319	St 15 RRStE 210.7	DC05 [Fe P05] L210GA	1.1241	Cm 50 C 75 W	C50R C75W	1.4762	X10CrAl 24 X20CrNiSi 25 4	X10CrAlSi25 X20CrNiSi25-4	1.8159	50 CrV 4 34 CrAl 6	51CrV4 34CrAl6
1.0322	NN3IE 210.7	DX 56 D	1.2067	102 Cr 6	102Cr6	1.4828	X15CrNiSi 20 12	X15CrNiSi20-12	1.8519	31 CrMoV 9	31CrMoV9
1.0330	St 12 [St 2]	DC01 [Fe P01]	1.2080	- 102 GI 0	X210Cr12	1.4833	X7CrNi 23 14	X7CrNi23-12	1.8550	34 CrAlNi 7	34CrAlNi7
1.0333	USt 13	-	1.2083	_	X42Cr13	1.4841	X15CrNiSi 25 20	X15CrNiSi25-21	1.8807	13 MnNiMoV 5 4	13MnNiMoV5-4
1.0338	St 14 [St 4]	DC04 [Fe P04]	1.2419	_	105WCr6	1.4845	X12CrNi 25 21	X12CrNi25-21	1.8812	18 MnMoV 5 2	18MnMoV5-2
1.0345	HI	P235GH	1.2767	_	X45NiCrMo4	1.4864	X12NiCrSi 36 16	X12NiCrSi35-16	1.8815	18 MnMoV 6 3	18MnMoV6-3
1.0347	RRSt 13 [RRSt 3]	DC03 [Fe P03]	1.3243	S6-5-2-5	S 6-5-2-5	1.4878	X12CrNiTi18 9	X10CrNiTi18-10	1.8821	StE 355 TM	P355M
1.0348	UHI	P195GH	1.3343	S6-5-2	S 6-5-2	1.4903	_	X10CrMoVNb9-1	1.8824	StE 420 TM	P420M
1.0350	St 03 Z	DX 52 D	1.3344	S6-5-3	S 6-5-3	1.5026	55 Si 7	55Si7	1.8826	StE 460 TM	P460M
1.0355	St 05 Z	DX 53 D	1.4000	X6Cr 13	X6Cr13	1.5131	50 MnSi 4	50MnSi4	1.8828	EStE 420 TM	P420ML2
1.0356	TTSt 35 N	P215NL	1.4002	X6CrAl 13	X6CrAl13	1.5415	15 Mo 3	16Mo3	1.8831	EStE 460 TM	P460ML2
1.0358	St 05 Z	-	1.4003	X2Cr 11	X2CrNi12	1.5530	21 MnB 5	20MnB5	1.8832	TStE 355 TM	P355ML1
1.0401	C 15	-	1.4005	_	X12CrS13	1.5531	30 MnB 5	30MnB5	1.8835	TStE 420 TM	P420ML1
1.0402	C 22	C22	1.4006	X10Cr 13	X12Cr13	1.5532	38 MnB 5	38MnB5	1.8837	TStE 460 TM	P460ML1
1.0403	C 15 Pb	- C05	1.4016	X6Cr 17	X6Cr17	1.5637	10 Ni 14	12Ni14	1.8879	StE	P690Q
1.0406 1.0419	C 25 St 52.0	C25 L355	1.4021	X20Cr 13 X30Cr 13	X20Cr13 X30Cr13	1.5662 1.5680	_	X11CrMo5+I X12Ni5	1.8880	WStE TStE	P690QH P690QL1
1.0419	St 45.8 (заменен)	P265	1.4028	X38Cr 13	X38Cr13	1.5710	36 NiCr 6	36NiCr6	1.8882	10 MnTi 3	10MnTi3
1.0424	St 42.8 (заменен)	P265	1.4034	X46Cr 13	X46Cr13	1.5715	_	16NiCrS4	1.8888	EStE	P690QL2
1.0425	H2	P265GH	1.4037	X65Cr13	X65Cr13	1.5752	14 NiCr 14	15NiCr13	1.8900	StE 380	S380N
1.0429	StE 290.7 TM	L290MB	1.4057	X20CrNi 17 2	X17CrNi16-2		15 MnNi 6 3	15MnNi6-3	1.8901	StE 460	S460N
1.0457	StE 240.7	L245NB		X12CrMoS 17	X14CrMoS17		16 MnNi 6 3	16MnNi6-3	1.8902	StE 420	S420N
1.0459	RRStE 240.7	L245GA	1.4105	X4CrMoS 18	X6CrMoS17	1.6310	20 MnMoNi 5 5	20MnMoNi5-5	1.8903	TStE 460	S460NL
	StE 255	S255N	1.4109	X65CrMo 14	X70CrMo15	1.6311	20 MnMoNi 4 5	20MnMoNi4-5	1.8905	StE 460	P460N
	19 Mn 6	P355GH	1.4110	X55CrMo 14	X55CrMo14		11 NiMoV 5 3	11NiMoV5-3	1.8907	StE 500	S500N
	17 Mn 4	P295GH	1.4112	X90CrMoV 18	X90CrMoV18	1.6368		15NiCuMoNb5	1.8910	TStE 380	S380NL
	StE 290.7	L290NB	ł	X6CrMo 17 1	X6CrMo17-1	1.6511		36CrNiMo4	1.8911		S380NL1
	StE 285	P275N	1.4116	X45CrMoV 15	X50CrMoV15	1.6523		21NiCrMo2-2		TStE 420	S420NL
1.0501		C35 C45	1.4120	X20CrMo 13 X35CrMo 17	X20CrMo13 X39CrMo17-1	1.6526 1.6580		21NiCrMoS2-2 30CrNiMo8	1.8913		S420NL1
	StE 315	P315N		X35Crivio 17 X105CrMo 17	X105CrMo17		34 CrNiMo 6	34CrNiMo6	1.8915	TStE 460 WStE 500	P460NL1 S500NL
1.0505		C40	1.4301	X5CrNi 18 10	X5CrNi18-10		17 CrNiMo 6	18CrNiMo7-6	1.8918		P460NL2
1.0528		C30	1.4303	X5CrNi 18 12	X4CrNi18-12		38 Cr 2	38Cr2		EStE 500	S500NL1
	StE 350 -3Z	S350GD	1.4305	X10CrNiS 18 9	X8CrNiS18-9		46 Cr 2	46Cr2	1.8930	WStE 380	P380NH
1.0535		C55	1.4306	X2CrNi 19 11	X2CrNi19-11		17 Cr 3	17Cr3	1.8932	WStE 420	P420NH
	StE 355N	S355NH		X12CrNi 17 7	X10CrNi18-8	1.7023	38 CrS 2	38CrS2	1.8935	WStE 460	P460NH
1.0540	C 50	C50	1.4311	X2CrNiN 18 10	X2CrNiN18-10	1.7025	46 CrS 2	46CrS2	1.8937	TStE 500	P500NH
1.0547	St 52 –3U	S355J0H	1.4313	X4CrNi 13 4	X3CrNiMo13-4	1.7030	28 Cr 4	28Cr4	1.8972	StE 415.7	L415NB
	StE 360.7	L360NB		X2CrNiN 18 7	X2CrNiN18-7		34 Cr 4	34Cr4		StE 415.7 TM	L415MB
1.0601		C60		X1CrNi 25 21	X1CrNi25-21		37 Cr 4	37Cr4	1.8975		L450MB
	15 S 10	-	1.4361	X1CrNiSi 18 15	X1CrNiSi18-15-4		41 Cr 4	41 Cr4	1.8977	StE 480.7 TM	L485MB
	9 SMn 28	11SMn30	1.4362	X2CrNiN 23 4	X2CrNiN23-4		28 CrS 4	28CrS4	1.8978	StE 550.7 TM	L555MB
	9 SMnPb 28	11SMnPb30	1.4401	X5CrNiMo 17 122	X5CrNiMo17-12-2		34 CrS 4	34CrS4			
	10 S 20	10S20	1.4404	X2CrNiMo 17 13 2	X2CrNiMoNos 7.4		37 CrS 4	37CrS4			
	10 S Pb 20 35 S 20	10SPb20 35S20	1.4410	X10CrNiMo 18 9 X4CrNiMo 16 5	X2CrNiMoN25-7-4 X4CrNiMo16-5-1		41 CrS 4 16 MnCr 5	41CrS4 16MnCr5			
	45 S 20	46S20		X2CrNiMo 18 14 3	X2CrNiMo18-14-3		16 MnCrS 5	16MnCrS5			
1.0727	70 0 20	70020	1.4433	A2011411010 18 143	7/2 OTTVIIVIO 18- 14-3	1.7 139	10 IVIIIOI 3	TOWNTOISS			

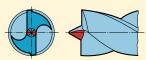

Основные геометрические параметры сверл



Формы заточки и производственные допуски

Формы заточки по DIN 1412 (фрагмет; издание 03 / 01)

Форма А Подточка перемычки


Форма D
Подточка поперечной кромки
для обработки серого

Форма В

Подточка перемычки и подточка главной режущей кромки

Форма Е

С зацентровочной вершиной

Форма С Затыловка

Производственный допуск спиральных сверл согласно DIN286, часть 2

Диаметр (Номин. размер) до вкл. мм	Разм мн h 8	· ·
0,38 0,60	10	7
0,95	12	8
3,00	14	10
6,00	18	12
10,00	22	15
18,00	27	18
30,00	33	21
50,00	39	25
80,00	46	30
120,00	54	35

^{*}Если Вам нужны допуски, отличные от ISO h8, просим сообщить нам об этом. Размеры дополнительной стоимости повышенной точности диаметров Вы найдете в таблице "дополнительная стоимость услуг" в конце главы "Сверла".

Ссылка на другие стандарты

DIN 228	лист инструментальный конус; конус Морзе и
	метрический конус, конич, хвостовики

DIN 1414 - 1 Технические условия поставки для спиральных сверл из быстрорежущей стали.

DIN 6580 Термины технологии обработки резанием; движения и геометрия операции обработки резанием.

DIN 6581 Термины технологии обработки резанием; системы координат и углы на реж. части инструмента.

Стандарты выдаются с разрешения немецкого института стандартов. Нормативным является соотв. новейшее издание стандарта в формате A4, которое выпускается издательством Beuth GmbH, 10787 Берлин.

Сверла

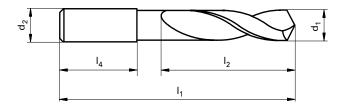
Спиральные сверла с цилиндрическим хвостовиком

	DIN	N 338	DIN	339	DIN	340	DIN	1897	DIN 1869 Сверхдлинные спиральные сверла							
									Ря	д 1	Ря	д 2	Ря	д 3		
Диаметр до (вкл.) мм	Общая длина	≤ Длина стружечной канавки	Общая длина s	з Длина стружечной канавки	Общая длина ≅	З Длина стружечной канавки	Общая длина	≩ Длина стружечной канавки	Общая длина	≤ Длина стружечной канавки	Общая длина	з Длина стружечной канавки	Общая длина	≅ Длина стружечной канавки		
≤ 0,24	19	2,5	IVI	IVI	IVI	IVI	19	1,5	IVI	IIVI	IVI	IVI	IVI			
0,30	19	3					19	1,5								
0,38	19	4			00*	40*	19	2								
0,48 0,53	20 22	5 6			30* 32*	10* 12*	19 20	2,5 3								
0,60	24	7	32*	15*	35*	15*	21	3,5								
0,67	26	8	36*	18*	38*	18*	22	4								
0,75 0,85	28 30	9 10	39* 42*	20* 22*	42* 46*	21* 25*	23 24	4,5 5								
0,85	32	11	45*	24*	51*	29*	25	5,5								
1,06	34	12	48	26	56	33	26	6								
1,18	36	14	50	28	60	37	28	7								
1,32 1,50	38 40	16 18	52 55	30 33	65 70	41 45	30 32	8 9								
1,70	43	20	58	35	76	50	34	10	115*	75*						
1,90	46	22	62	38	80	53	36	11	120*	80*						
2,12 2,36	49 53	24 27	66 70	41 44	85 90	56 59	38 40	12 13	125 135	85 90	160* 170*	110* 115*	205* 215*	135* 145*		
2,65	57	30	74	47	95	62	43	14	140	95	180*	120*	225*	150*		
3,00	61	33	79	51	100	66	46	16	150	100	190	130	240*	160*		
3,35	65	36	84	55	106	69	49	18	155	105	200	135	250*	170*		
3,75 4,25	70 75	39 43	91 96	60 64	112 119	73 78	52 55	20 22	165 175	115 120	210 220	145 150	265 280	180 190		
4,75	80	47	102	69	126	82	58	24	185	125	235	160	295	200		
5,30	86	52	108	74	132	87	62	26	195	135	245	170	315	210		
6,00 6,70	93 101	57 63	116 124	80 86	139 148	91 97	66 70	28 31	205 215	140 150	260 275	180 190	330 350	225 235		
7,50	109	69	133	93	156	102	74	34	225	155	290	200	370	250		
8,50	117	75	142	100	165	109	79	37	240	165	305	210	390	265		
9,50	125	81	151	107	175	115	84	40	250	175	320	220	410	280		
10,60 11,80	133 142	87 94	162 173	116 125	184 195	121 128	89 95	43 47	265 280*	185 195*	340 365*	235 250*	430 455*	295 310*		
13,20	151	101	184	134	205	134	102	51	295*	205*	375*	260*	480*	330*		
14,00	160	108	194	142	214	140	107	54								
15,00 16,00	169 178	114 120	202 211	147 153	220 227	144 149	111 115	56 58								
17,00	184	125	218	159	235	154	119	60								
18,00	191	130	226	165	241	158	123	62								
19,00	198	135	234	171	247	162	127	64								
20,00 21,20	205	140	242	177	254 261	166 171	131 136	66 68								
22,40					268	176	141	70								
23,60					275	180	146	72								
25,00 26,50					282 290	185 190	151 156	75 78								
28,00					298	195	162	81								
30,00					307	201	168	84								
31,50					316	207	174	87								
33,50 35,50							180 186	90 93								
35,50							193	93 96								
40,00							200	100								
42,50							207	104								
45,00 47,50							214 221	108 112								
50,00							228	116								

^{*}Заводской стандарт

Спиральные сверла с конусом Морзе

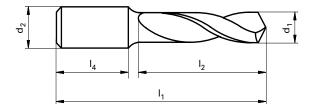
		DIN 345		ı	DIN 346		DIN 341			Сверла для обработки с кондукторной втулкой с большим конусом Морзе*			Сверла GV/VA* Для трудно- обрабатываемых материалов			DIN 1870 Сверхдлинные спиральные св				ные све	рла
										кон	усом Мо	рзе*					Ряд 1			Ряд 2	
Диаметр до (вкл.) мм	Общая длина	Длина § стружечной канавки	Конус Морзе	Общая длина	Длина g стружечной канавки	Конус Морзе	Общая длина	Длина g стружечной канавки	Конус Морзе	Общая длина	Длина § стружечной канавки	Конус Морзе	Общая длина	Длина § стружечной канавки	Конус Морзе	Общая длина	Длина § стружечной канавки	Конус Морзе	Общая длина	Длина 5 стружечной канавки	Конус Морзе
2,65	111*	30*	1*		101101			IVIIVI			101101			IVIIVI			101101			101101	
3,00	114	33	1																		
3,35	117	36	1																		
3,75	120	39	1																		
4,25	124	43	1				145*	64*	1*												
4,75	128	47	1				150*	69*	1*												
5,30	133	52	1				155	74	1												
6,00	138	57	1				161	80	1												
6,70 7,50	144 150	63 69	1				167 174	86 93	1												
7,50 8,50	150	69 75	1				181	100	1				130	49	1	265	165	1	330	210	1
9,50	162	81	1				188	107	1				134	53	1	275	175	1	345	220	1
10,60	168	87	1	185*	87*	2*	197	116	1	214	116	2	138	57	1	285	185	1	360	235	1
11,80	175	94	1	192*	94*	2*	206	125	1	223	125	2	142	61	1	300	195	1	375	250	1
13,20	182	101	1	199	101	2	215	134	1	232	134	2	147	66	1	310	205	1	395	260	1
14,00	189	108	1	206	108	2	223	142	1	240	142	2	168	70	2	325	220	1	410	275	1
15,00	212	114	2	235*	114*	3*	245	147	2	268	147	3	172	74	2	340	220	2	425	275	2
16,00	218	120	2	241*	120*	3*	251	153	2	274	153	3	176	78	2	355	230	2	445	295	2
17,00	223	125	2	246*	125*	3*	257	159	2	280	159	3	179	81	2	355	230	2	445	295	2
18,00	228	130	2	251*	130*	3*	263	165	2	286	165	3	183	85	2	370	245	2	465	310	2
19,00 20,00	233	135 140	2	256 261	135 140	3	269 275	171 177	2	292	171 177	3	186 212	88 91	2	370 385	245 260	2	465 490	310 325	2
21,20	243	145	2	266	145	3	282	184	2	305	184	3	216	95	3	385	260	3	490	325	3
22,40	248	150	2	271	150	3	289	191	2	312	191	3	219	98	3	405	270	3	515	345	3
23,02	253	155	2	276	155	3	296	198	2	319	198	3	222	101	3	405	270	3	515	345	3
23,60	276	155	3	304*	155*	4*	319	198	3	347	198	4	222	101	3	425	270	3	535	345	3
25,00	281	160	3	309*	160*	4*	327	206	3	355	206	4	225	104	3	440	290	3	555	365	3
26,50	286	165	3	314*	165*	4*	335	214	3	363	214	4	256	107	4	440	290	3	555	365	3
28,00	291	170	3	319	170	4	343	222	3	371	222	4	259	110	4	460	305	3	580	385	3
30,00	296	175	3	324	175	4	351	230	3	379	230	4	263	114	4	460	305	3	580	385	3
31,50	301	180	3	329	180	4	360	239	3	388	239	4	266	117	4	480	320	3	610	410	3
31,75	306	185	3	334	185	4	369	248	3	397	248	4	269	120	4	480	320	3	610	410	3
33,50	334	185	4	372*	185*	5* 5*	397	248	4	435	248	5	269	120	4	505	320	4	635	410	4
35,50 37,50	339 344	190 195	4	377* 382*	190* 195*	5* 5*	406 416	257 267	4 4				272 276	123 127	4 4	530	340 340	4 4	665	430 430	4 4
40,00	349	200	4	387*	200*	5 5*	426	277	4				317	130	5	555	360	4	695	460	4
42,50	354	205	4	392	205	5	436	287	4				320	133	5	555	360	4	695	460	4
45,00	359	210	4	397	210	5	447	298	4				323	136	5	585	385	4	735	490	4
47,50	364	215	4	402	215	5	459	310	4							585	385	4	735	490	4
50,00	369	220	4	407	220	5	470	321	4							605	405	4	765	510	4
50,80	374	225	4	412	225	5	475*	326*	4*												
53,00	412	225	5	479*	225*	6*	513*	326*	5*												
56,00	417	230	5	484*	230*	6*	518*	331*	5* =*												
60,00	422 427	235	5 5	489*	235*	6* 6*	523*	336*	5*												
63,00 67,00	432	240 245	5 5	494* 499	240* 245	6															
71,00	437	250	5	504	250	6															
75,00	442	255	5	509	255	6															
76,50	447	260	5	514	206	6															
80,00	514	260	6																		
85,00	519	265	6																		
90,00	524	270	6																		
95,00	529	275	6																		
100,00	534	280	6																		
106,00	539*	285*	6*																		


^{*}Заводской стандарт

Твердосплавные спиральные сверла (сверла Ratio)

Твердосплавные спиральные сверла (сверла Ratio) DIN 6537

Относится к цельным твердосплавным спиральным сверл с 2 или 3 режущими кромками и цилиндрическим хвостовиком по DIN 6535

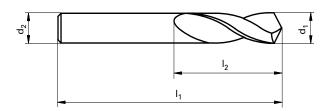


Размеры в мм

	G.,,,,,,,,,		a Ratio 3 x D	Сверла для		
Диапазон номин. Ø до d1m7	Ø хвостовика d 2 h 6	Общая длина I1	Длина стружечной канавки макс. I2	Общая длина I1	Длина стружечной канавки макс. I2	Длина хвостовика I4
2,93,75	6	62	20	66	28	36
4,75	6	66	24	74	36	36
6,00	6	66	28	82	44	36
7,00	8	79	34	91	53	36
8,00	8	79	41	91	53	36
10,00	10	89	47	103	61	40
12,00	12	102	55	118	71	45
14,00	14	107	60	124	77	45
16,00	16	115	65	133	83	48
18,00	18	123	73	143	93	48
20,00	20	131	79	153	101	50

Твердосплавные спиральные сверла (сверла Ratio) DIN 6538

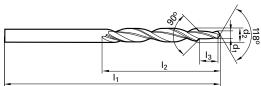
Относится к спиральным сверлам с впаянной режущей пластиной или головкой из твердого сплава с усиленным хвостовиком из стали по DIN 6535. Припаянная головка может быть целой режущей частью либо ее составляющей.



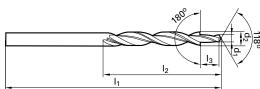
			a Ratio 3 x D		a Ratio 5 x D	Сверла для		
Диапазон номин. Ø до	Ø хвостовика	Общая длина	Длина струж. канавки макс.	Общая длина	Длина струж. канавки макс.	Общая длина	Длина струж. канавки макс.	Длина хвостовика
d 1 h 7	d 2 h 6	l1	l2	l1	l2	l1	l2	14
9,512,0	16	103	51	127	75	151	99	48
14,0	16	111	59	139	87	167	115	48
16,0	20	122	68	154	100	186	132	50
18,0	20	130	76	166	112	202	148	50
20,0	25	144	84	184	124	224	164	56
22,0	25	153	93	197	137	241	181	56
24,0	25	161	101	209	149	257	197	56
26,0	32	174	110	226	162	278	214	60
28,0	32	182	118	238	174	294	230	60
30,0	32	190	126	250	186	310	246	60

Твердосплавные спиральные сверла (сверла Ratio)

Твердосплавные спиральные сверла (сверла Ratio) DIN 6539

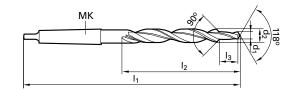

Относится к цельным твердосплавным спиральным сверлам с цилиндрическим хвостовиком (диаметр хвостовика равен диаметру режущей части).

Диапазон номин. Ø до	Общая длина	Длина стружечной канавки
(= Ø хвостовика d2) d	l1	12
1,902,12	38	12
2,36	40	13
2,65	43	14
3,00	46	16
3,35	49	18
3,75	52	20
4,25	55	22
4,75	58	24
5,30	62	26
6,00	66	28
6,70	70	31
7,50	74	34
8,00	79	37
8,50	79	37
9,50	84	40

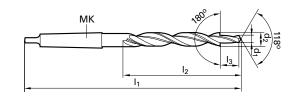

Диапазон номин. ∅ до	Общая длина	Длина стружечной канавки		
(= Ø хвостовика d2) d	l1	12		
10,00	89	43		
10,60	89	43		
11,80	95	47		
12,00	102	51		
13,20	102	51		
14,00	107	54		
15,00	111	56		
16,00	115	58		
17,00	119	60		
18,00	123	62		
19,00	127	64		
20,00	131	66		

Ступенчатые сверла с цилиндрическим хвостовиком, угол ступени 90°

Ø зенковки d2 h8 мм	Ø ступени d1 h9 мм	Общая длина I1 мм	Длина стружечной канавки I2 мм	Длина ступени l3 мм	Для резьбы	Область применения						
		•	HSS DIN 8378/	СТП								
3,4	2,5	70	39	8,8	М 3	Для внутреннего диаметра резьбы по						
4,5	3,3	80	47	11,4	M 4	DIN 336 и сквозного зенкованного отверстия по DIN ISO 273 (старый) и						
5,5	4,2	93	57	13,6	M 5	DIN EN 20273. Средней серии.						
6,6	5,0	101	63	16,5	M 6							
9,0	6,8	125	81	21,0	M 8							
11,0	8,5	142	94	25,5	M 10							
13,5	10,2	160	108	30,0	M 12							
DIN 8374 для зенковок точной серии												
6,0	3,2	93	57	9,0	М 3	Для сквозных отверстий по DIN-ISO 273						
8,0	4,3	117	75	11,0	M 4	(старый), DIN EN 20273. Точной серии и углублений головки винта формы А и В						
10,0	5,3	133	87	13,0	M 5	по DIN 74 часть 1(старый). Точной серии						
11,5	6,4	142	94	15,0	M 6	и углублений головки винта по DIN 74						
15,0	8,4	169	114	19,0	M 8	форма F. Для винтов по DIN 963 (старый) и DIN 964 (старый).						
19,0	10,5	198	135	23,0	M 10	, ,						
			СТП для зенко	вок средней серии	1							
6,6	3,4	101	63	9,0	М 3	Для сквозных отверстий по DIN-ISO 273						
9,0	4,5	125	81	11,0	M 4	(старый) и углубления головки винта формы A и B по DIN 74 часть 1(старый).						
11,0	5,5	142	94	13,0	M 5	Средней серии. Для винтов по DIN 963						
13,0	6,6	151	101	15,0	M 6	(старый) и DIN 964 (старый).						
17,2	9,0	191	130	19,0	M 8							
			DIN 8374 для зен	ковок средней сер	рии							
7,5	3,4	109	69	9,0	M 3	Для сквозных отверстий по DIN-ISO 273						
9,7	4,5	133	87	11,0	M 4	(старый) и углубления головки винта формы A и B по DIN 74 часть 1(старый).						
12,0	5,5	151	101	13,0	M 5	Средней серии. Для винтов по DIN 963						
14,5	6,6	169	114	15,0	M 6	(старый) и DIN 964 (старый).						
19,9	9,0	198	135	19,0	M 8							


Ступенчатые сверла с цилиндрическим хвостовиком, угол ступени 180°

Ø зенковки d2 h8 мм	Ø ступени d1 h9 мм	Общая длина I1 мм	Длина стружечной канавки I2 мм	Длина ступени ІЗ мм	Для резьбы	Область применения
		•	HSS DIN 8376	СТП		
6,0**	3,4	93**	57**	9,0	М 3	Для сквозных отверстий по DIN-ISO 273
6,5	3,4	101	63	9,0	М 3	(старый) DIN EN 20 273. Средней серии. Углубления головки болта по DIN 974 -1
8,0	4,5	117	75	11,0	M 4	и углубления головки болта формы H, J
10,0	5,5	133	87	13,0	M 5	и К по DIN 74 часть 2 (старый). Средней серии. Для болтов по DIN 84 (старый),
11,0	6,6	142	94	15,0	M 6	912 (старый), 6912, 7513 и DIN7984.
15,0	9,0	169	114	19,0	M 8	
18,0	11,0	191	130	23,0	M 10	
				СТП		
6,0	3,2	93	57	9,0	М 3	Для сквозных отверстий по DIN-ISO 273
8,0	4,3	117	75	11,0	M 4	(старый) и углубления головки болта формы Н. Ј и К по DIN 74 часть 2 (ста-
						рый). Точной серии. Для болтов по DIN
						84 (старый), 912 (старый), 6912, 7513 и DIN7984.
			СТП для зенковок			
5,9	3,2	93	57	11,0	M 3	Для болтов DIN 84 (старый), DIN 912 (старый), и DIN6912. Для старых форм
7,4	4,3	109	69	13,0	M 4	углублений H, J и K по DIN 75 часть 2.
9,4	5,3	125	81	16,0	M 5	Точной серии.
10,4	6,4	133	87	19,0	M 6	
13,5	8,4	160	108	22,0	M 8	
16,5	10,5	184	125	25,0	M 10	
			СТП для зенковок с	редней серии (ста	рый*)	
8,0	4,8	117	75	13,0	М 3	Для болтов по DIN 84 (старый), DIN 912
10,0	5,8	133	87	16,0	M 4	(старый), и DIN 6912. Для старых форм углубления Н. J и К по DIN 75 часть 2.
11,0	7,0	142	94	19,0	M 5	Средней серии.
14,5	9,5	169	114	22,0	M 6	
17,5	11,5	191	130	25,0	M 8	


^{*} DIN 75 , часть 2 ; ** СТП

Ступенчатые сверла с конусом Морзе, угол ступени 90 $^{\circ}$

Ø зенковки d2 h8 мм	Ø ступени d1 h9 мм	Общая длина I1 мм	Длина струж. канавки I2 мм	Конус Морзе МК	Длина ступени I3 мм	Для резьбы	Область применения						
				СТП									
11,0 13,0 17,2 21,5 26,0	5,5 6,6 9,0 11,0 14,0	175 182 228 248 286	94 101 130 150 165	1 1 2 2 2	13,0 15,0 19,0 23,0 27,0	M 5 M 6 M 8 M 10 M 12	Для сквозных отверстий по DIN-ISO 273 (старый), DIN EN 20273. Средней серии. Углубления головки винта по DIN 74 формы F и углубления головки винта формы A и B по DIN 74 часть 1 (старый). Средней серии. Для винтов по DIN 963						
29,0	16,0	296	175	3	31,0	M 14	(старый) и DIN 964 (старый).						
	DIN 8375												
12,0 14,5 19,0	5,5 6,6 9,0	182 253	101 108 135	1 1 2	13,0 15,0 19,0	M 5 M 6 M 8	Для сквозных отверстий по DIN-ISO 273 (старый), DIN EN 20273. Средней серии. Углубления головки винта по DIN 74 формы F и углубления головки винта						
23,0	11,0	248	155	2	23,0	M 10	формы А и В по DIN 74 часть 1 (старый). Средней серии. Для винтов по DIN 963 (старый) и DIN 964 (старый).						
				СТП									
11,5 15,0 19,0 23,0 26,0	6,4 8,4 10,5 13,0 15,0	175 212 233 253 286	94 114 135 155 165	1 2 2 2	15,0 19,0 23,0 27,0 31,0	M 6 M 8 M 10 M 12 M 14	Для сквозных отверстий по DIN-ISO 273 (старый), и углубления головки винта формы А и В по DIN 74 часть 1 (старый). Точной серии. Для винтов по DIN 963 (старый) и DIN 964 (старый).						
30.0	17.0	296	175	3	35,0	M 16							
,	,			DIN 837									
9,0	6,8	162	81	1	21,0	M 8	Для внутреннего диаметра резьбы по DIN 336, DIN EN 20273. Средней серии.						
11,0 13,5	8,5 10,2	175 189	94 108	1	25,5 30,0	M 10 M 12	Зенкованного сквозного отверстия по DIN ISO 273 (старый).						
15,5 17,5 20,0 22,0	12,0 14,0 15,5 17,5	218 228 238 248	120 130 140 150	2 2 2 2	34,5 38,5 43,5 47,5	M 14 M 16 M 18 M 20							

Ступенчатые сверла с конусом Морзе, угол ступени 180 $^{\circ}$

Ø зенковки d2 h8 мм	Ø ступени d1 h9 мм	Общая длина I1 мм	Длина стружеч- ной канавки I2 мм	Морзе ІЗ мм		Для резьбы	Область применения					
			HSS DI	N 8377/	тп							
10,0	5,5	168	87	1	13,0	M 5	Для сквозных отверстий по DIN-ISO 273					
11,0	6,6	175	94	1	15,0	M 6	(старый), DIN EN 20273. Средней серии. Углубления головки болта по DIN 974-1					
15,0	9,0	212	114	2	19,0	M 8	и углубления головки болта формы H, J					
18,0	11,0	228	130	2	23,0	M 10	и К по DIN 74 часть 2 (старый). Средней					
20,0	13,5	238	140	2	27,0	M 12	серии. Для болтов по DIN 84 (старый), 912 (старый), 6912, 7513 и DIN 7984.					
24,0	15,5	281	160	3	31,0	M 14						
26,0	17,5	286	165	3	35,0	M 16						
30,0	20,0	296	175	3	39,0	M 18						
33,0	22,0	334	185	4	43,0	M 20						
СТП												
10,0	5,3	168	87	1	13,0	M 5	Для сквозных отверстий по DIN-ISO					
11,0	6,4	175	94	1	15,0	M 6	273 (старый) и углубления головки болта формы H, J и K по DIN 74 часть 2					
15,0	8,4	212	114	2	19,0	M 8	(старый). Точной серии. Для болтов по					
18,0	10,5	228	130	2	23,0	M 10	DIN 84 (старый), 912 (старый), 6912, 7513					
20,0	13,0	238	140	2	27,0	M 12	и DIN 7984.					
24,0	15,0	281	160	3	31,0	M 14						
26,0	17,0	286	165	3	35,0	M 16						
			СТП для зе	нковок точно	ой серии (старый	*)						
9,4	5,3	162	81	1	16,0	M 5	Для болтов по DIN 84 (старый), DIN 912					
10,4	6,4	168	87	1	19,0	M 6	(старый), и DIN 6912. Для старых форм углублений Н, J и К по DIN 75 часть 2.					
13,5	8,4	189	108	1	22,0	M 8	Точной серии.					
16,5	10,5	223	125	2	25,0	M 10	·					
19,0	13,0	233	135	2	28,0	M 12						
23,0	15,0	253	155	2	30,0	M 14						
25,0	17,0	281	160	3	33,0	M 16						
28,0	19,0	291	170	3	36,0	M 18						
31,0	21,0	301	180	3	39,0	M 20						
		-	СТП для зе	нковок точно	ой серии (старый	*)						
10,0	5,8	168	87	1	16,0	M 5	Для болтов по DIN 84 (старый) и DIN					
11,0	7,0	175	94	1	19,0	M 6	6912. Для старых форм углублений Н, Ј и К по DIN 75 часть 2. Средней серии.					
14,5	9,5	212	114	2	22,0	M 8	тель вич то часть 2. Оредней серии.					
17,5	11,5	228	130	2	25,0	M 10						
20,0	14,0	238	140	2	28,0	M 12						
24,0	16,0	281	160	3	30,0	M 14						
26,0	18,0	286	165	3	33,0	M 16						
29,0	20,0	296	175	3	36,0	M 18						
33,0	23,0	334	185	4	39,0	M 20						

дюйм мм		дюйм мм		дюймы мм дк		дюйм	ы мм	MK	дюйм	лы мм	Для резьбы	Область применения
	Британский стандарт											
19/32	15,08	25/64	9,92	8 5/8	219	4 3/4	121	2	3/4	19,05	3/8 дюйма	Для болтов с плоской головкой по
21/32	16,67	29/64	11,51	8 3/4	222	4 7/8	124	2	7/8	22,22	7/16 дюйма	британскому стандарту.
25/32	19,84	33/64	13,10	9 3/8	238	5 1/2	140	2	1	25,40	1/2 дюйма	

^{*} DIN 75 , часть 2

Зенкеры с цилиндрическим хвостовиком

Насадные зенкеры

			DIN 344			DIN 222			
Диаметр до вкл. мм	Общая длина мм	Длина струж. канавки мм	Диаметр до вкл. мм	Общая длина мм	Длина струж. канавки мм	Ном.Ш до вкл. мм	Общая длина мм	Номин. Ш отверстия мм	
4,25	96*	64*	11,70	173	125	35,5	45	13	
4,75	102*	69*	13,20	184	134	45,0	50	16	
5,30	108	74	14,00	194	142	53,0	56	19	
6,00	116	80	15,00	202	147	63,0	63	22	
6,70	124	86	16,00	211	153	75,0	71	27	
7,50	133	93	17,00	218	159	90,0	80	32	
8,50	142	100	18,00	226	165	101,6	90	40	
9,50	151	107	19,00	234	171				
10,60	162	116	20,00	242	177				

Зенкеры с конусом Морзе

		DIN 343			DIN 1864	
Диаметр до вкл. мм	Общая длина мм	Длина струж. канавки мм	Конус Морзе	Общая длина мм	Длина струж. канавки мм	Конус Морзе
7,50	150*	69*	1*	174*	93*	1*
8,50	156*	75*	1*	181*	100*	1*
9,50	162	81	1	188	107	1
10,60	168	87	1	197	116	1
11,70	175	94	1	206	125	1
13,20	182	101	1	215	134	1
14,00	189	108	1	223	142	1
15,00	212	114	2	245	147	2
16,00	218	120	2	251	153	2
17,00	223	125	2	257	159	2
18,00	228	130	2	263	165	2
19,00	233	135	2	269	171	2
20,00	238	140	2	275	177	2
21,20	243	145	2	282	184	2
22,40	248	150	2	289	191	2
23,60	253	155	2	296	198	2
25,00	281	160	3	327	206	3
26,50	286	165	3	335	214	3
28,00	291	170	3	343	222	3
30,00	296	175	3	351	230	3
31,50	301	180	3	360	239	3
33,50	334	185	4			
35,50	339	190	4			
37,50	344	195	4			
40,00	349	200	4			
42,50	354	205	4			
45,00	359	210	4			
47,50	364	215	4			
50,00	369	220	4			

Малоразмерные сверла (общая длина 25 мм)

*СТП

		DIN	1899		
Диаметр до вкл. мм	Ш хвостовика мм	Длина струж. канавки мм	Диаметр до вкл. мм	Ш хвостовика мм	Длина струж. канавки мм
от 0,1 0,12	1,0	0,5	0,67	1,0	4,2
0,15	1,0	0,8	0,75	1,0	4,8
0,19	1,0	1,1	0,79	1,0	5,3
0,24	1,0	1,5	0,85	1,5	5,3
0,30	1,0	1,9	0,95	1,5	6,0
0,38	1,0	2,4	1,06	1,5	6,8
0,48	1,0	3,0	1,18	1,5	7,6
0,53	1,0	3,4	1,32	1,5	8,5
0,60	1,0	3,9	1,45	1,5	9,5

Давление и расход СОЖ

Представленный в диаграмме оптимальный, удовлетворительный и минимальный необходимый расход предназначен только для спиральных сверл Ratio тип RT 100 и не зависит от типа станка. Давление, наоборот, зависит от типа станка, т.к. каждый станок имеет собственные системы охлаждения и соответственно иные условия подачи СОЖ (Рис.1). Поэтому приведенные параметры давления даны в качестве информации для определения порядка величин. Для сверл Ratio тип RT 80 с центральным каналом под СОЖ применяются другие критерии (Рис. 2).

Диаграммы предназначены для важнейшей области применения сверл Ratio - обработки стали. Они являются ориентировочными, но также применяются при обработке других материалов, в первую очередь именно потому, что для обработки стали всегда применяется самое высокое давление охлаждающей жидкости. Насколько выбор типа

охлаждения зависит от обрабатываемого материала, показывают чувствительные к охлаждению сверла Ratio тип RT 150 с прямыми канавками. В частности, потеря стойкости из-за низкого давления СОЖ при обработки чугуна значительно больше, чем при сверлении AlSi- сплавов. Это, однако, относится только к обработке AlSi-сплавов с короткой стружкой! Соответственно необходимое минимальное или удовлетворительное давление для обработки чугуна при подборе должно быть немного выше, чем при обработке AlSi (Рис. 3 и 4).

Рекомендуемые величины следует использовать для глубины отверстия до 5 х D. Для более глубоких отверстий должны применяться инструменты с внутренным охлаждением, а именно RT150 GN, поскольку иначе обработка становится экономически неэффективной.

Рис. 1 : Необходимые давление и расход СОЖ для сверл Ratio типа RT 100 с винтовыми каналами СОЖ.

Рис. 2 : Необходимые давление и расход СОЖ для сверл Ratio тип RT 80 с центральным каналом СОЖ

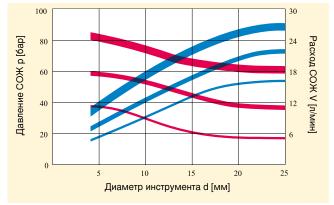


Рис.3 : Необходимые давление и расход СОЖ для обработки GG25 сверлами Ratio с прямыми канавками типа RT 150 GG.

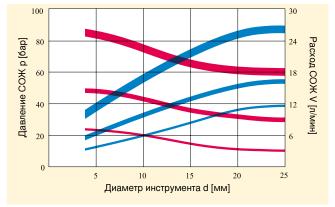


Рис. 4: Необходимые давление и расход СОЖ для обработки AlSi7 сверлами Ratio с прямыми канавками. тип RT 150 GG.

Примеры обработки, точность обработанного отверстия

1. В 42CrMo4V, Ш 14,5 мм

Сверло HSS, тип N Арт. № 651

vc = 25 м/мин

f = 0.25 мм/об

+Вмакс = 131.8 мкм

-Rмакс = - 49.1 мкм

Факт. D = 14.566 мм

dRмакс = 103.5 мкм

ΑV

AV = 49.2 MKM

Ra = 2.6 MKM, Rz = 6.8 MKM

Сверло Ratio, тип RT 80 Арт. № 1171 S

API. N≌ 1171

vc = 70 м/мин f = 0.25 мм/об

+Вмакс = 42.7 мкм

+RMarc = 42.7 MRM

-Rмакс = - 29.6 мкм

Факт. D = 14.515 мм

dRмакс = 12.9 мкм

AV = 35.3 MKM

Ra = 1.4 MKM, Rz = 4.31 MKM **IT 9**

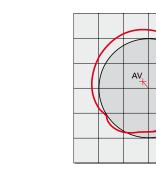
100 um

Сверло Ratio, тип RT 100 Арт. № 1181

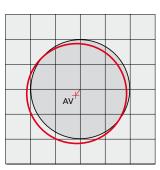
vc = 70 M/MuH

f = 0.25 мм/об

+Rмакс = 26.7 мкм


-Rмакс = - 17.2 мкм

Факт. D = 14.509 мм


dRмакс = 5.2 мкм

AV = 22.8 MKM

Ra = 1.04 MKM, Rz = 3.2 MKM | **T 8**

IT 12

Максимальное отклонение круглости (dRмакс) образуется как абсолютная сумма наибольших положительных и отрицательных отклонений фактического контура к средней окружности. Смещение оси показывает на сколько мкм сверло отходит в сторону. Параметр с наибольшим отклонением определяет точность отверстия IT в зависимости от диаметра инструмента.

Черная окружность изображает заданное отверстие, которое инструмент должен сделать в идеальном случае. Красная окружность показывает фактический контур, т.е. фактическую форму отверстия, которую мы получаем соответсвующими типами сверл. Огибающая окружность (голубая) представляет усреднение фактической окружности, т.е. средний диаметр (у сверл Ratio огибающая окружность практически равна фактическому \emptyset).

2. В GGG40, Ш 10 мм

Сверло HSS, тип N

Арт. № 651 vc = 30 м/мин

f = 0.2 мм/об Факт. D = 10.77 мм

+Вмакс = 106 мкм

-Rмакс = 28 мкм

dRмакс = 42 мкм

AV= 68.5 мкм

Ra = 3.7 MKM, Rz = 17.2 MKM **IT 12**

Сверло Ratio, тип RT 100

Арт. № 1181

vc = 90 м/мин f = 0.3 мм/об

Факт. D = 10.027 мм

+Рмакс = 34 мкм

-Rмакс = 9.2 мкм

dRмакс = 6.5 мкм

AV = 22.5 MKM

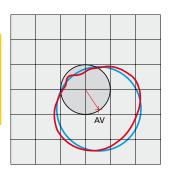
Ra = 2.2 MKM, Rz = 11.5 MKM **IT 9**

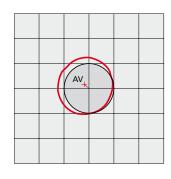
Сверло Ratio, тип RT 150 GG

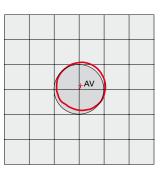
Арт. № 768

vc = 130 м/мин f = 0.2 мм/об

Факт. D = 9.994 мм


+Rмакс = 11.5 мкм


-Rмакс = - 18 мкм


dRмакс = 5 мкм

AV = 14 MKM

Ra = 1.99 MKM, Rz = 11.2 MKM **IT 8**

Допуски

DIN 333		
Диапазон Ø мм	Предельные отклонения мм	
0,50 - 2,50	0 +0,14	
3,15 – 5,00	0 +0,18	
6,30 – 10,00	0 +0,22	
12,50	0 +0,27	

для Арт. № 285/ 286		
Диапазон Ø мм	Предельные отклонения мм	
1,00 –1,25	0 +0,10	
1,60 – 3,15	0 +0,15	
3,15 — 10,00	0 +0,20	

по В.S. 328		
Диапазон Ø мм	Предельные отклонения мм	
1,19 – 1,59	0 ±0,05	
2,38 – 3,17	0 ±0,07	
4,76	0 ±0,07	
6,35 – 7,94	0 ±0,12	

по В.S. 328		
Диапазон Ø хвостовиков мм	Предельные отклонения мм	
3,17 – 4,76	-0,020	
6,35	-0,025	
7,94 – 11,11	-0,050	
15,87 – 19,05	-0,050	

согласно ASA	
Диапазон Ø мм	Предельные отклонения мм
все	0 + 0,07 мм

Работа со стандартом DIN 2184

Стандарт DIN 2184 определяет основные размеры для метчиков и бесстружечных метчиков, предназначеных для изготовления резьб с номинальным диаметром $d_1 > 0.9 \dots 113$ мм. В части 1 приведены основные размеры инструмента длинной серии , в части 2 - основные размеры инструмента короткой серии. Данные разделы включают в себя соответственно диапазоны номин. диаметров и, в зависимости

от шага резьбы, количества заходов и соотношения общей длины к длине резьбовой части, возможные исполнения усиленного и заниженного хвостовиков. Подробное описание исполнений хвостовиков и особенностей стандартов Вы найдете на следующей странице.

Метчики

	DIN 2	184-1		DIN 2184-2					
м		инные длинны	е	Ручные и короткие машинные метчики, короткие					
			резьба ISO лкий шаг	Метр. рез основно		Метр. резьба ISO мелкий шаг			
DIN 37		_	IN 371 IN 374	DIN	352	DIN 2181			
UNC-/BSW*- резьба	_	INF G- зьба резьба		UNC-/BSW UNF резьба		G- резьба	Рд- резьба		
~DIN 371 ~DIN 376		N 371 N 374	DIN 5156	~DIN 352	~DIN 2181	DIN 5157	DIN 40 432		

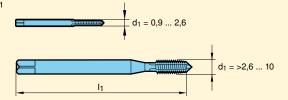
Бесстружечные метчики

DIN 2184-1									
DIN	2174	DIN 2184-1							
Метр. резьба ISO основной шаг	Метр. резьба ISO мелкий шаг	UNC- резьба	UNF резьба	G- резьба					
ранее DIN 371 DIN 376	ранее DIN 371 DIN 374	ранее ~DIN 371 ~DIN 376	ранее ~DIN 371 ~DIN 374	ранее DIN 5156					

Исполнение хвостовиков для резьбонарезного инструмента

Вид резьбы	DIN	содержится	Диапазоны номинальных диаметров в мм							
	Метчики Бесстр. метчики	В	0,9 2,6	>2,6 6,35	>6,35 10,0	>10,0				
M	DIN 371	2184-1	•	•	•	_				
метрическая по ISO	DIN 376	2184-1	•	•	•	•				
основной шаг	DIN 352	2184- 2	•	•	•	•				
	DIN 2174	2184-1	•	•	•	•				
MF	DIN 371	2184-1	•	•	•	_				
метрическая по ISO	DIN 374	2184-1	_	•	•	•				
мелкий шаг	DIN 2181	2184- 2	•	•	•	•				
	DIN 2174	2184-1	•	•	•	•				
UNC-/BSW	~DIN 371	2184-1	•	•	•	_				
	~DIN 376	2184-1	•	•	•	•				
	~DIN 352	2184- 2	•	•	•	•				
UNF	~DIN 371	2184-1	•	•	•	-				
	~DIN 374	2184-1	_	•	•	•				
	~DIN 2181	2184- 2	•	•	•	•				
G	DIN 5156	2184-1	_	•	•	•				
	DIN 5157	2184- 2	-	•	•	•				
Pg	DIN 40 432	2184- 2	_	_	_	•				

1570

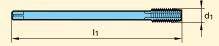

Основные размеры для инструмента по DIN 2184 часть 1

Ном.∅ мм		Исполнение хвосто	вика	Шаг мм	Общая длина мм	Макс. длина резьбы мм
более до	усиленный Ø	хвостовик Рабочая длина	заниженный хвостовик Ø			Mini
0,91,20	2,5	5,5	_	≤0,20	40	5,5
1,201,40	2,5	7,0	_	≤0,35	40	7,0
	·	·	_		40	·
1,401,80	2,5	8,0		≤0,35		8,0
1,802,00	2,8	8,0	-	≤0,40	45	8,0
2,002,30	2,8	9,0	-	≤0,40	45	9,0
2,302,60	2,8	9,0	-	≤0,50	50	9,0
2,603,20	3,5	18	2,2	≤0,45	56	8,0
2,603,20	3,5	18	2,2	0,500,60	56	11,0
3,203,55	4,0	20	2,5	≤0,50	56	9,0
3,203,55	4,0	20	2,5	0,600,80	56	12,0
3,554,20	4,5	21	2,8	≤0,50	63	10,0
3,554,20	4,5	21	2,8	0,600,80	63	13,0
4,204,55	6,0	25	3,5	≤0,60	70	12,0
	·		·			•
4,204,55	6,0	25	3,5	0,700,80	70	16,0
4,555,00	6,0	25	3,5	≤0,75	70	12,0
4,555,00	6,0	25	3,5	0,801,00	70	16,0
5,005,60	6,0	30	4,0	≤0,75	80	12,0
5,005,60	6,0	30	4,0	0,801,00	80	17,0
5,606,10	6,0	30	4,5	≤0,80	80	14,0
5,606,10	6,0	30	4,5	1,0	80	19,0
6,106,40	7,0	30	4,5	≤0,80	80	14,0
6,106,40	7,0	30	4,5	1,001,25	80	19,0
6,407,00	7,0	30	5,5	≤0,80	80	14,0
6,407,00	7,0	30	5,5	1,001,25	80	19,0
	8,0	30	6,0		80	
7,008,00			·	≤0,80		18,0
7,008,00	8,0	35	6,0	1,001,50	90	22,0
8,009,00	9,0	30	7,0	≤0,80	90	18,0
8,009,00	9,0	35	7,0	1,001,50	90	22,0
9,0010,15	10,0	35	7,0	≤1,00	90	20,0
9,0010,15	10,0	39	7,0	1,251,50	100	24,0
10,1511,15	-	-	8,0	0,251,00	90	20,0
10,1511,15	_	_	8,0	1,251,75	100	24,0
11,1512,80	_	-	9,0	0,251,50	100	22,0
11,1512,80	_	_	9,0	1,752,00	110	28,0
12,8014,35	_	_	11,0	0,251,50	100	22,0
12,8014,35	_	_	11,0	1,752,00	110	30,0
	_					
14,3517,10		-	12,0	0,251,50	100	22,0
14,3517,10	-	-	12,0	1,752,00	110	32,0
17,1019,10	-	-	14,0	0,251,50	110	25,0
17,1019,10	-	-	14,0	1,752,50	125	34,0
19,1021,15	-	-	16,0	0,251,75	125	25,0
19,1021,15	-	-	16,0	2,002,50	140	34,0
21,1523,00	-	-	18,0	0,251,75	125	25,0
21,1523,00	-	-	18,0	2,002,50	140	34,0
23,0026,00	-	-	18,0	0,252,00	140	28,0
23,0026,00	_	-	18,0	2,503,00	160	38,0
26,0028,15	_	_	20,0	0,252,00	140	28,0
26,0028,15	-	-	20,0	2,503,00	160	38,0
28,1530,20	_	_	22,0	0,252,00	150	28,0
		_	22,0		180	45,0
28,1530,20	_			2,503,50		
30,2032,00	-	-	22,0	0,252,00	150	28,0
30,2032,00	-	-	22,0	2,503,50	180	50,0
32,0033,30	-	-	25,0	0,252,00	160	30,0
32,0033,30	-	-	25,0	2,503,50	180	50,0
33,3038,20	-	-	28,0	0,252,00	170	30,0
33,3038,20	-	-	28,0	2,504,50	200	56,0
38,2042,00	-	-	32,0	0,252,00	170	30,0
38,2042,00	_	_	32,0	2,504,50	200	60,0
42,0045,00	_	_	36,0	0,252,00	180	32,0
42,0045,00	_	_	36,0	2,503,00	200	50,0
42,0045,00	_	_	36,0	3,505,00	220	69,0
			· ·		190	
45,0050,00	-	-	36,0	0,252,00		82,0
45,0050,00	-	-	36,0	2,503,00	225	50,0
45,0050,00	_	_	36,0	3,505,00	250	70,0

Особенности отдельных стандартов

DIN 371

основные размеры DIN2184-1

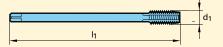


Стандарт для машинных метчиков для метрической резьбы ISO с основным и мелким шагом с усиленным хвостовиком. Длинная серия.

Исполнение хвостовика соответствует расположенным рядом диапазонам диаметров (мм).

DIN 376

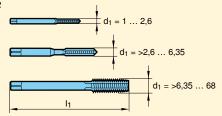
основные размеры DIN2184-1



Стандарт для машинных метчиков для метрической резьбы ISO, с удлиненным заниженным хвостовиком (гаечный метчик). Длинная серия.

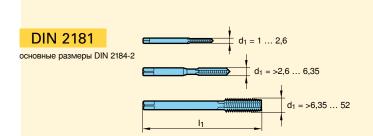
Диапазон диаметров d1 = 1,6 ... 68 мм (≤ Ш М3, исполнение хвостовика без четырехгранника)

DIN 374


основные размеры DIN2184-1

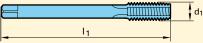
Стандарт для ручных метчиков для метрической резьбы ISO с мелким шагом, с удлиненным заниженным хвостовиком (гаечный метчик). Длинная серия. Диапазон диаметров $d_1=3\dots 52$ мм

DIN 352


основные размеры DIN 2184-2

Стандарт для ручных и машинных метчиков для метрической резьбы ISO. Короткая серия. Исполнение хвостовика соотв. расположенным рядом

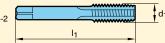
диапазонам диаметров (мм).



Стандарт для ручных и машинных метчиков для метрической резьбы ISO с мелким шагом. Короткая серия. Исполнение хвостовика соотв. расположенным рядом диапазонам диаметров (мм).

DIN 5156

основные размеры DIN2184-1

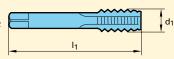

Стандарт для машинных метчиков для трубной резьбы G по DIN ISO 228 и для трубной резьбы Whitworth по DIN 2999. Длинная серия.

Диапазоны диаметров:

Трубная резьба G G $^{1}/_{16}$ " ... G 4" Резьба Whitworth Rp $^{1}/_{16}$ "... Rp 4"

DIN 5157

основные размеры DIN 2184-2

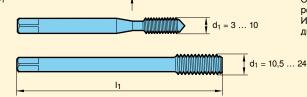

Стандарт для машинных метчиков и для трубной резьбы G по DIN ISO 228 и для трубной резьбы Витворт по DIN EN 10 226-1. Короткая серия.

Диапазоны диаметров:

Трубная резьба G G ¹/₁₆" ... G 4" Резьба Whitworth Rp ¹/₁₆"... Rp 4"

DIN 40 432

основные размеры DIN 2184-2



Стандарт для машинных метчиков для резьбы в стальной арматуре по DIN 40 430. Короткая серия.
Лиапазон диаметров:

Диапазон диаметров: Pg 7 (12,5 мм) ... Pg 48 (59,3 мм) Заменен на DIN 374 ISO 3 6 G.

DIN 2174

основные размеры DIN2184-1

d₁ = 2 ... 2,6

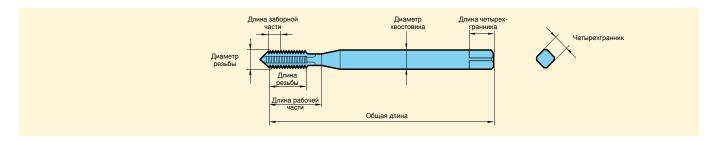
Стандарт для бесстружечных метчиков для метрической резьбы ISO с основным и мелким шагом. Длинная серия. Исполнение хвостовика соотв. расположенным рядом диапазонам диаметров (мм).

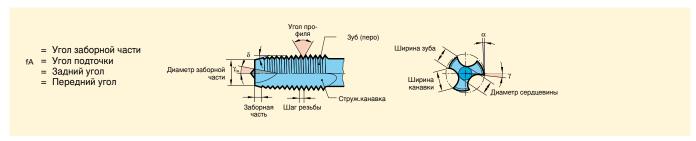
Внутренний диаметр отверстия для нарезания резьбы

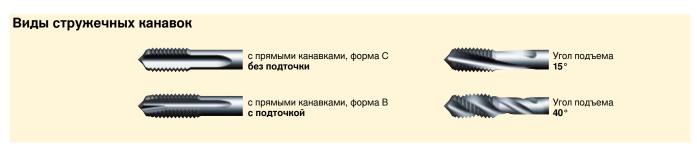
Метрі		ая резьб агом DIN		овным	ым Метрическая резьба с мелким шагом UNC-ре DIN 336 DIN 336 IS															
номин Ø	шаг Р	внутр. диам. (Сверл)	внут га	грØ ика	номин Ø	шаг Р (внутр. диам. Сверл)	внут гай	рØ iка	номин Ø	шаг Р (внутр. диам. (Сверл)	вну га	трØ йка	разг	мер ни		внутр. диам. (Сверл)	Га	/трØ айка
	мм	Ø MM	мин. мм	макс. мм		мм	Ø MM	мин. мм	макс. мм		мм	Ø MM	мин. мм	макс. мм			на ойм	MM	MИН. MM	макс. мм
M 1	0,25	0,75	0,729	-	M 2,5 x	0,35	2,15	2,121	2,221	M 22	1,00	21,00	20,917	21,153	Nr.	1 -	64	1,50	1,425	1,582
M 1,1	0,25	0,85	0,829	-	М3 х	0,35	2,65	2,621	2,721	M 22	1,50	20,50	20,376	20,676	Nr.	2 -	56	1,85	1,694	1,872
M 1,2	0,25	0,95	0,929		M 3,5 x	0,35	3,15	3,121	3,221	M 22	2,00	20,00	19,835	20,21	Nr.	3 -	48	2,10	1,941	2,146
M 1,4	0,30	1,10	1,075	-	M 4,0 x	,	3,50	3,459	3,599	M 24		23,00	22,917	23,153	Nr.		40	2,35	2,385	2,156
M 1,6	0,35	1,25	1,221	1,321	M 4,5 x		4,00	3,959	4,099	M 24		22,50	22,376		Nr.		40	2,65	2,697	2,487
M 1,8	0,35	1,45	1,421	1,521	M 5,0 x		4,50	4,459	4,599	M 24		22,00	21,835	22,21	Nr.		32	2,85	2,642	2,896
M 2	0,40	1,60	1,567	1,679	M 5,5 x	,	5,00	4,959	5,099	M 25	,	24,00	23,917		Nr.		32	3,50	3,302	3,531
M 2,2	0,45	1,75	1,713	1,838	M 6,0 x		5,20	5,188	5,378	M 25		23,50	23,376		Nr.		24	3,90	3,683	3,962
M 2,5	0,45	2,05	2,013	2,138	M 7,0 x		6,20	6,188	6,378	M 25		23,00	22,835	23,21	Nr.		24	4,50	4,343	4,597
M 3	0,50	2,50	2,459	2,599	M 8,0 x		7,50	7,459	7,599	M 27		26,00	25,917				20	5,10	4,976	5,268
M 3,5	0,60	2,90	2,85	3,010	M 8,0 x		7,20	7,188	7,378	M 27	,	25,50	25,376	,			18	6,60	6,411	6,734
M 4 M 4,5	0,70	3,30	3,242 3,688	3,422	M 8,0 x		7,00	6,917 8,188	7,153 8,378	M 27		25,00	24,835	25,21			16	8,00	7,805	8,164
M 5	0,75 0,80	3,70 4,20	4,134	4,334	M 9,0 x M 9,0 x		8,20 8,00	7,917	8,153	M 28 >		27,00 26,50	26,917 26,376				14 13	9,40 10,80	9,149 10,584	9,55 11,013
M 6	1.00	5.00	4,134	5,153	M 10 x		9.20	9.188	9,378	M 28		26,00	25,853	26,076		3	12	12.20	11,996	12,456
M 7	1,00	6,00	5,917	6,153	M 10 x		9,00	8,917	9,153	M 30		29,00	28,917	- ,	_		11	13,50	13,376	13,868
M 8	1,25	6,80	6.647	6,912		1,25	8,80	8,647	8,912	M 30		28,50	26,376				10	16,50	16,299	16,833
M 9	1,25	7,80	7,647	7,912		0,75	10,20	10,188	10,378	M 30	,	28,00	27,835	28,21		ì -	9	19,50	19,169	19,748
M 10	1,50	8,50	8,376	8,676	M 11 x		10,00	9,917	10,153	M 30		27,00		27,252	_	1 -	8	22,25	21,963	22,598
M 11	1,50	9,50	9,376	9,676	M 12 x		11,00	10,917	11,153	M 32		30,50		30,676	1	I∏ -	7	25,00	24,648	,
M 12	1,75	10,20	,	10,441	M 12 x		10,80	10,647	10,912	M 32		30,00	29,835	30,21		1 » -	7	28,00	27,823	28,524
M 14	2,00	12,00	11,835	12,21	M 12 x	1,50	10,50	10,376	10,676	M 33		31,50	31,376	31,676		1 Ï -	6	30,75	30,343	21,12
M 16	2,00	14,00	13,835	14,21	M 14 x	1,00	13,00	12,917	13,153	M 33	2,00	31,00	30,835	31,21		1,-	6	34,00	33,518	34,295
M 18	2,50	15,50	15,294	15,744	M 14 x	1,25	12,80	12,647	12,912	M 33	3,00	30,00	29,752	30,252		1 ^ -	5	39,50	38,951	39,814
M 20	2,50	17,50	17,294	17,744	M 14 x	1,50	12,50	12,376	12,676	M 35	1,50	33,50	33,376	33,676		2 - 4	4,5	45,00	44,689	45,598
M 22	2,50	19,50	19,294	19,744	M 15 x	1,00	14,00	13,917	14,153	M 36	1,50	34,50	34,376	34,676						
M 24	3,00	21,00	20,752	21,252	M 15 x	1,50	13,50	13,376	13,676											
M 27	3,00	24,00	23,752	24,252	M 16 x	1,00	15,00	14,197	15,153											
M 30	3,50	26,50	26,211	26,771	M 16 x	1,25	14,75	14,647	14,912					аметра р						*
M 33	3,50	29,50	29,211	29,771	M 16 x		14,50		14,676	для о	брабо	тки бес	струже	чными м	етчи	ками	(по	DIN 13,	Часть 5	0)
M 36	4,00	32,00	31,67	32,27	M 17 x		16,00	,	16,153					1 резьбы						
M 39	4,00	35,00	34,67	35,27	M 17 x		15,50	15,376	15,676					метр рез						
M 42	4,50	37,50	- , -	37,799	M 18 x		17,00	16,917	17,153					овых пов						
M 45	4,50	40,50	- ,	40,799	M 18 x	,	16,50	16,376	16,676					ные резь						
M 48	5,00	43,00	42,587		M 18 x		16,00	15,835	16,21			• • •		резанны						
M 52	5,00	,		47,287	M 20 x		19,00	18,917	19,153											
M 56	5,50	50,50	50,046	50,796		1,50	18,50	18,376	18,676											
					M 20 x	2,00	18,00	17,835	18,21											

Рекомендуемый диаметр сверл под обработку бесстружечными метчиками

	Метрическая резьба							Метрическая резьба с мелким шагом												
номин Ø	шаг	сверло Ø	внут 7 гай	H	номин Ø	шаг	сверло Ø	внут 7 гай	H	номин. Ø	X	шаг	сверло Ø	внут 7 гай	H	номин Ø	шаг	сверло Ø	7	гр∅ ′Н йка
М	М	ММ	МИН	макс	M	М	MM	мин	макс		MN	1	ММ	МИН	макс	М	М	ММ	МИН	макс
M 2	0,40	1,85	1,84	1,88	M 16	2,00	15,10	15,05	15,20	M 5	х	0,5	4,80	4,79	4,85	14,00 ×	1,25	13,40	13,36	13,47
M 2,2	0,45	2,03	2,01	2,05	M 18	2,50	16,90	16,83	17,02	M 6	х	0,75	5,65	5,62	5,70	14,00 x	1,50	13,30	13,26	13,38
M 2,5	0,45	2,30	2,28	2,32	M 20	2,50	18,90	18,83	19,02	M 7	х	0,75	6,70	6,67	6,75	15,00 x	1,00	14,55	14,52	14,62
М 3	0,50	2,80	2,79	2,85						M 8	Х	0,75	7,65	7,62	7,70	15,00 x	1,50	14,30	14,26	14,38
M 3,5	0,60	3,25	3,23	3,30						M 8	Х	1,00	7,55	7,52	7,62	16,00 x	1,00	15,55	15,52	15,62
M 4	0,70	3,70	3,68	3,76						М 9	Х	0,75	8,70	8,67	8,75	16,00 x	1,50	15,30	15,26	15,38
M 4,5	0,75	4,20	4,17	4,25						М 9	Х	1,00	8,55	8,61	8,69	17,00 x	1,00	16,55	16,52	16,62
M 5	0,80	4,65	4,63	4,71						M 10	Х	0,75	9,70	9,67	9,75	17,00 x	1,50	16,30	16,26	16,38
M 6	1,00	5,55	5,52	5,62						M 10	Х	1,00	9,55	9,52	9,62	18,00 x	1,00	17,55	17,52	17,62
M 7	1,00	6,55	6,52	6,62						M 10	х	1,25	9,40	9,36	9,47	18,00 x	1,50	17,30	17,26	17,38
M 8	1,25	7,40	7,36	7,47						M 11	Х	0,75	10,70	10,67	10,75	18,00 x	2,00	17,05	17,00	17,15
M 9	1,25	8,40	8,36	8,47						M 11	Х	1,00	10,55	10,52	10,62	20,00 x	1,00	19,55	19,52	19,62
M 10	1,50	9,30	9,26	9,38						M 12	Х	1,00	11,55	11,52	11,62	20,00 x	1,50	19,30	19,26	19,38
M 11	1,50	10,30	10,26	10,38						M 12	х	1,25	11,40	11,36	11,47	22,00 ×	1,50	21,30	21,26	21,38
M 12	1,75	11,20	11,15	11,29						M 12	х	1,50	11,30	11,26	11,38	24,00 x	1,50	23,30	23,26	23,38
M 14	2,00	13,10	13,05	13,20						M 14	Х	1,00	13,55	13,52	13,62	24,00 x	2,00	23,10	23,05	23,20


DI	UNF-резьба DIN 336 (ISO 5864)			BSW-(Whitworth)- Резьба				(Whitworth-) Трубная резьба (по DIN-ISO 228) DIN 336				Резьба для стальной арматуры по DIN 40430							
размер нито	к внутр. диам. (сверло)	внут гаі	грØ ика	номин Ø	ниток	внутр. диам. (сверло)	вну	гр∅ йка	размер	ниток	внутр. диам. (сверло)	вну га	грØ ика	раз	мер	ниток	внутр. диам. (сверло)	внут гаі	грØ ика
на дюй	`Ø ´	мин. мм	макс. мм	дюйм	на дюйм	` Ø ′ мм	мин. мм	макс. мм	дюйм	на дюйм	`Ø′ мм	мин. мм	макс. мм			на дюйм	` Ø ′ мм	мин. мм	макс. мм
Nr. 1 - 72	1,55	1,473	1,613	wπ	40	2,50	-		G >	28	6,80	6,561	6,843	Pg	7	20	11,40	11,28	11,43
Nr. 2 - 64	1,90	1,755	1,913	W B	32	3,20	-	_	GΠ	28	8,80	8,566	8,848	Pg	9	18	14,00	13,86	14,010
Nr. 3 - 56	2,15	2,024	2,197	W	24	3,60	_		G »	19	11,80	11,445	11,89	Pg	11	18	17,30	17,26	17,41
Nr. 4 - 48	2,40	2,271	2,459	W »	20	5,10	4,744	5,224	GΪ	19	15,25	15,395	14,95	Pg	13,5	18	19,00	19,060	19,21
Nr. 5 - 44	2,70	2,55	2,741	W	18	6,50	6,151	6,661	G,	14	19,00	18,631	19,172	Pg	16	18	21,30	21,16	21,31
Nr. 6 - 40	2,95	2,819	3,023	WΪ	16	7,90	7,512	8,052	Gι	14	21,00	20,587	21,128	Pg		16	26,90	26,78	27,030
Nr. 8 - 36	3,50	3,404	3,607	wø	14	9,20	8,809	9,379	G ^	14	24,50	24,117	24,658	Pg	29	16	35,50	35,48	35,73
Nr. 10 - 32	4,10	3,962	4,166	W,	12	10,50	10,015	10,61	GÌ	14	28,25	27,877	28,418	Pg	36	16	45,50	45,48	45,73
Nr. 12 - 28		4,496	4,724	Wı	11	13,50	12,948	13,598	G 1	11	30,75	30,291	30,931	Pg		16	52,50	52,48	52,73
» - 28	5,50	5,367	5,58	W ^	10	16,25	15,831	16,538	G 1 ∏	11	35,50	34,939	35,579	Pg	48	16	57,80	57,78	58,030
Û - 24	6,90	6,792	7,038	WÌ	9	19,25	18,647	19,411	G 1 »	11	39,50	38,952	39,592						
<u> </u>	8,50	8,379	8,626	W 1	8	22,00	21,375	22,185	G 1 ¸	11	45,25	44,845	45,485						
Ø - 20	9,90	9,739	10,030	W 1 ∏		24,50	23,976	24,879	G 1 ^	11	51,00	50,788	51,428						
, - 20	11,50	11,326	11,618	W 1 »	7	27,75	27,151	28,054	G 2	11	57,00	56,656	57,296						
¤ - 18	12,90	12,761	13,084	W 1 Ï	6	30,50	29,558	30,555											
ı - 18	14,50	14,348	14,671	W 1 ,	6	33,50	32,733	33,73											
^ - 16	17,50	17,33	,	W 1 ı	5	35,50	34,834												
<u>ì</u> - 14	-, -	20,262		W 1 ^	5	39,00	38,009												
1 - 12	23,25	23,109	23,569	W 2	4,5	44,50	43,643	44,823											
1 ∏ - 12	26,50	26,284	,																
1 » - 12	- ,	29,459																	
1 ^ - 12		32,634	33,094								NPT								
1, - 12	36,00	35,809	36,269					Америн	анская	кониче		убная р	езьба К	онус	1:16	6			
		нение А можости			Испо	лнение В			Разм	ер Нито на		. отверсти индр. (A)	кон	ıич. (B		Глуби	на резьбы ЕТ		а сверл. мин.)
	`не при	менять)								дюй	М	d ₁		D ₁			ММ	N	IM .
	d ₁				D ₁				>	- 27		6,15		6,39			9,29		0,7
		-			•	-			Π	- 27		8,40		8,74			9,32		0,8
	773	100	4	5/3	2	10	+ +		<u>»</u>	- 18		11,10		1,36			13,52		5,6
		12		90	-	10:	. 2		1	- 18		14,30		4,80			13,83		6,0
		00 3	6	1		10	1 8		,	- 14		17,90		8,32			18,07		0,8
	0	1		183			1		^	- 14		23,30		3,67			18,55		1,3
	1	11/1	-1	10	>	189			1	- 11,		29,00		9,69			22,29		5,6
	11/1/	///		12	1/1/	100	1		1	,		37,70		8,45			22,80		6,1
	1///	1//		0	11/1	1/1			1	, - 11,		43,70		4,52			22,80		6,1
	1111	111		10	111	1.111			2	- 11,		55,60		6,56			23,20		6,5
									2	, - 8		66,30		7,62			31,57		5,3
									3	- 8		82,30	83	3,52		;	33,74	38	3,5


	UNC-резьба								
		С- значение ниток на	Сверло Ø	Внутр∅ 7Н гайка					
		дюйм	MM	МИН	макс				
Nr. 10	-	24	4,35	4,32	4,41				
Nr. 12	-	24	5,00	4,97	5,05				
»	-	20	5,75	5,71	5,80				
	-	18	7,30	7,26	7,37				
Ϊ	-	16	8,80	8,76	8,87				
Ø	-	14	10,30	10,25	10,38				
	-	13	11,80	11,75	11,90				
¤	-	12	13,30	13,24	13,39				
1	-	11	14,80	14,74	14,90				
^	-	10	17,90	17,83	18,01				
ì	-	9	20,90	20,83	21,02				
1	-	8	23,90	23,82	24,03				


	UNF-резьба								
		 значение ниток на	Сверло Ø	7	трØ ′Н йка				
		дюйм	MM	МИН	макс				
Nr. 10	-	32	4,45	4,43	4,49				
Nr. 12	-	28	5,10	5,08	5,15				
»	-	28	5,95	5,92	5,99				
	-	24	7,45	7,42	7,50				
Ϊ	-	24	9,05	9,02	9,10				
Ø	-	20	10,50	10,46	10,56				
	-	20	12,10	12,06	12,15				
¤	-	18	13,65	13,61	13,72				
ī	-	18	15,25	15,21	15,32				
^	-	16	18,30	18,25	18,37				
ì	-	14	21,40	21,35	21,49				
1	-	12	24,40	24,34	24,50				


(Whitworth-) Трубная резьба (по DIN-ISO 228)								
Размер	Ниток	Сверло Ø	7	трØ 'Н				
	на		га	йка				
дюйм	дюйм	ММ	мин	макс				
G >	28	7,30	7,21	7,31				
GΠ	28	9,20	9,22	9,31				
G »	19	12,40	12,37	12,52				
GΪ	19	15,90	15,88	16,03				
G,	14	19,90	19,83	20,01				
Gι	14	21,90	21,73	21,91				
G^	14	25,40	25,33	25,51				
G 1	11	32,00	31,79	32,00				
G 1 »	11	40,70	40,48	40,69				

Основные геометрические параметры метчиков

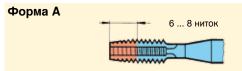
	Исполнение центра	Исполнение центра на	
Диапазон диаметров резьбы мм	с формой заборной части А, С, D, E	с формой заборной части В	хвостовике
≤ 4,2	1	①	4 5 6
> 4,2 5,6	① ②	1	4 5 6
> 5,6 10,0	1 2 3	1 2 3	4 5 6
> 10,0	3	3	6

Исполнение канала под СОЖ

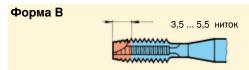
Центральный подвод СОЖ с радиальным выходом в стружечную канавку в зоне заборного конуса.

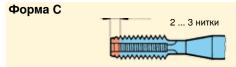
Формы заборной части - Выбор и применение

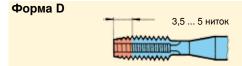
При нарезании внутренней резьбы вся обработка выполняется зубьями заборной части. Поэтому необходимо особо тщательно принимать решение о наиболее подходящей форме заборной части. От этого в большой степени зависит как стойкость метчика, так и качество резьбы.

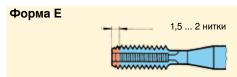

Профиль и длина заборной части зависит в основном от вида отверстия. Понятие сквозного отверстия не требует дальнейшего уточнения. Глухим отверстием обозначают все отверстия, из которых при нарезании резьбы стружка должна выводиться против направления подачи и отрезаться при обратном ходе метчика. Глухими отверстиями т.о. могут считаться иногда и сквозные отверстия.

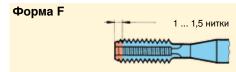
Длину заборной части определяют исходя из противоположных точек зрения. Для предотвращения перегрузки, преждевременного затупления и слишком большой резьбы число проходов заборной части не должно быть слишком маленьким. С другой стороны, слишком длинная заборная часть увеличивает крутящий момент и, следовательно, опасность поломки. Подточка "форма В" гарантирует постоянный отвод стружки в направлении подачи.




Формы заборной части по DIN 2197

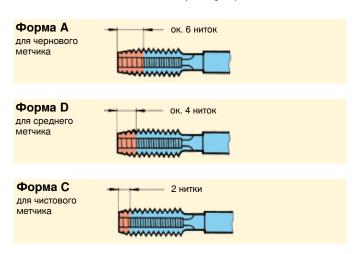

длинная, 6 - 8 ниток для коротких сквозных отверстий


средняя, 3,5 - 5,5 ниток с подточкой, для всех сквозных отверстий и отверстий с большой глубиной для материалов с длинной и средней длины стружкой

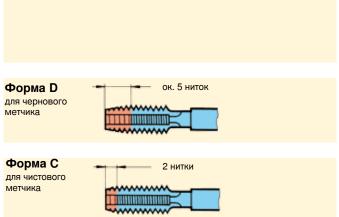

коротк., 2 - 3 нитки для глухих отверстий и общего применения для алюминия, серого чугуна и латуни

средняя, 3,5 - 5 ниток для коротких сквозных отверстий

очень короткая, 1,5 - 2 нитки, для глухих отверстий с очень коротким сбегом резьбы. по возможности не применять



очень короткая, 1 - 1,5 нитки для глухих отверстий с очень коротким сбегом резьбы. по возможности не применять


* *

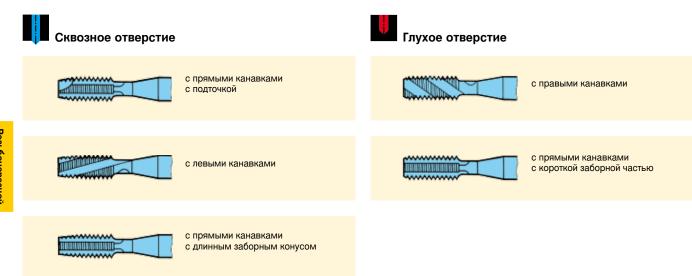
Формы заборной части - выбор и применение

Длина заборной части для комплектных метчиков (3 штуки)

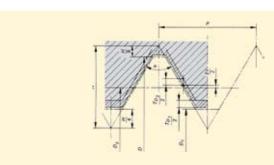
Длина заборной части для комплектных метчиков (2 штуки)

Рекомендации по применению

В то время, как тип отверстия определяет форму заборной части, другая геометрия метчика (форма, число и направление стружечных канавок, угол резания и т.д.) зависит от обрабатываемого материала и от условий применения. Метчики для нарезания метрической резьбы ISO до М16 в стальных заготовках имеют как правило 3, 4 и более стружечных канавки.


Метчики с левыми стружечными канавками, а также метчики с подточкой выводят стружку в направлении резания или направлении подачи и особенно хорошо пригодны для обработки сквозных отверстий. Также и прямые канавки с удлиненным заборным конусом (форма D) показывают в данном случае хорошие результаты.

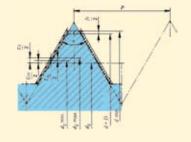
Для глухих отверстий мы рекомендуем метчики с правыми стружечными канавками или метчики с прямыми канавками с коротким заборным конусом. Инструмент с правыми стру-


жечными канавками выводит стружку назад в направлении хвостовика. Заборный конус конструктивно выполнен таким образом, что при отводе стружка не зажимается, а гарантированно отрезается.

Для обработки алюминия, серого чугуна и латуни Вам нужны метчики с короткой заборной частью, как для сквозного, так и для глухого отверстия. Длинная заборная часть метчика в этих материалах работает как зенкер со стружкоотделяющими канавками и рассверливает отверстие под резьбу на номинальный диаметр, вместо нарезания резьбы.

Метчики с прямыми канавками без подточки являются универсальным инструментом, имеющим недостаток в том, что при их применении не достигаются оптимальные результаты по отдельным материалам. Необходимо приложить усилия по выбору наиболее подходящего инструмента для выполнения соответствующей задачи по металлообработке.

Метчики для метрической резьбы ISO DIN EN 22857 (фрагмент)


Профиль внутренней резьбы

Базовый профиль:

- Номинальный диаметр
- Внутренний диаметр резьбы
- Средний диаметр резьбы
- Шаг резьбы
- Угол профиля
- Высота
- профиля резьбы Нижний предел,
- ноль для поля допуска Н. положительный для допуска G

Допуски:

T_{D1} Допуск внутр.диаметра резьбы Т_{D2} Допуск сред. диаметра резьбы

Допуск: T_{d2} Допуск для

среднего диаметра

Профиль метчика

Базовый профиль: d=D

Номинальный диаметр d min. Минимальный размер наружного диаметра Нижнее отклонение наружного диаметра

 $d_2=D_2$ Средний диаметр резьбы

d₂ min. Минимальный размер среднего диаметра резьбы d₂ max. Максимальный размер среднего диаметра резьбы Es Верхнее отклонение среднего диаметра резьбы Em Нижнее отклонение среднего диаметра резьбы

Для международной унификации резьбы была создана резьба ISO. Это себя полностью оправдало. Метрическая резьба ISO является сегодня самым распространенным видом резьбы. Этот факт отражен и в нашей программе по метчикам.

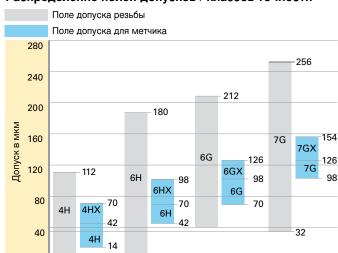
Метчики со смещенным полем допуска по DIN 802 Часть 1 обозначаются дополнительной буквой "X" (6 HX, 6 GX). Рекомендуем использовать метчики согласно прилагаемой диаграмме:

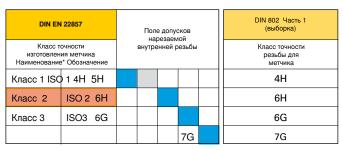
Степень точности допуска (цифровое обозначение)

Для наружней резьбы степень точности выражается с помощью цифр от 3 до 9, для внутренней резьбы от 4 до 8. 3 - для самого узкого допуска, 9 - для самого широкого допуска.

Основные отклонения поля допуска (буквенное обозначение)

Основные отклонения допуска обозначаются по ISO для внутренней резьбы заглавными буквами от А до Н, для наружней резьбы - маленькими буквами от а до h. Допуска от А до G или от а до g имеют положительные или отрицательные предельные отклонения. Поля допусков Н и h начинаются с нулевого отклонения. Для обычных резьб применяются допуска Н и g; для резьбы с последующей обработкой поверхности - допуска G и е.


При изготовлении резьбовых шпилек по ISO в отношении позиций допусков от а до д необходимо обратить внимание на то, что учитываются определенные предельные допуска для наружного диаметра (наружний диаметр болта = номинальный диаметр минус допуск).


Поле допуска (внутренней резьбы)/ Класс точности (метчика)

Квалитет и положение допуска определяется полем допуска. Его обозначение состоит из соответствующих цифр и букв.

Обозначение допуска метчика соответствует полю допуска внутренней резьбы, для которой метчик имеет преимущественное применение. Это не в каждом случае аналогично полю допуска обработанной резьбы.

Распределение полей допусков / классов точности

Допуски трех классов применения рассчитываются согласно приведенным данным в зависимости от единицы допуска і, величина которого соответствует допуску среднего диаметра TD2 с классом точности 5 для резьбы гайки (экстрополируется с шагом до 0,2 мм):

t = T_D 2 Класс точности 5 резьбы гайки

Метчики для метрической резьбы ISO DIN EN 22857 (фрагмент)

Допуски и посадки для резьбы

Пары внутрненней и наружной резьбы отделяются друг от друга косой чертой, напр. 6H/6g (гайка/болт). Выбор посадки в соответствии с выбранным резьбовым соединением.

Поля допусков, установленные в классах точности точный, средний и грубый, относятся к трем величинам длин свинчивание резьбы нормальной (N), короткой (S) и длинной (L). В основном, для выбора класса точности резьбы действуют следующие правила:

Класс точности точный (S):

Для точной резьбы, если только допускаются изменения в характере посадки.

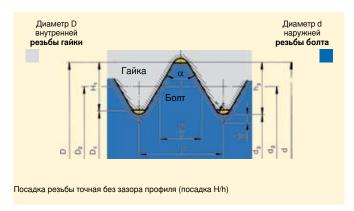
Класс точности средний (N):

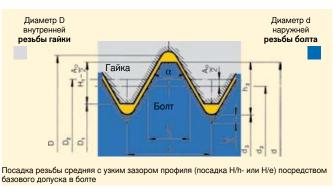
Общее применение

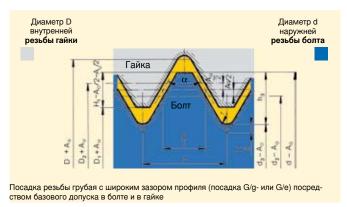
Класс точности грубый (L):

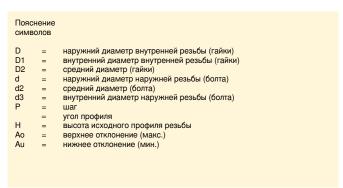
Если не предъявляются особые требования к точности и в случаях, когда могут возникнуть трудности в производстве, напр. для резьбы в горячекатаных стержнях, при нарезании резьбы в глубоких базовых отверстиях или для резьбы в пластмассовых деталях.

Длина свинчивания резьбы


Длина свинчивания также оказывает влияние на точность резьбового соединения. Система допусков ISO была специально адаптирована для среднего диаметра резьбы для трех длин свинчивания:


S (Short) = короткая длина свинчивания резьбы
N (Normal) = нормальная длина свинчивания резьбы
L (Long) = длинная длина свинчивания резьбы


При нормальной длине свинчивания N необходимо выбирать следующие парные сочетания:


Для увеличения прочности резьбового соединения мы рекомендуем для короткой длины свинчивания выбирать более узкие парные сочетания. Для большой длины свинчивания с целью компенсации отклонений шага необходимо использовать парные сочетания с увеличенным допуском посадки.

Резьбовые посадки при различном зазоре профиля

Ошибки и проблемы обработки с новыми метчиками

Проблема	Причина	Решение
1 Резьба слишком большая	 Геометрия для данного применения не пригодна Предварительно просверленное отверстие ма Позиционная или угловая ошибка отверстия под резьбу Ошибка хода шпинделя станка Метчик с наростом на режущей кромке Плохое направление метчика из-за недостато ной глубины резьбы Слишком высокая скорость резания Неправильный выбор СОЖ или недостаточны подвод СОЖ Допуск метчика не соответствует данным чер жа и/или резьбового калибра 	мым диаметром, см. табл. "Диаметры отверстий под резьбу" в общей технической части Проверить крепление инструмента - Использовать резьбонарезной патрон с компенсацией несоосности - Проверить сверло для отверстия под резьбу Использовать машинную подачу - использовать резьбонарезные патроны с компенсацией длины Использовать новый метчик или метчик с улучшенной поверхностью - Оптимизировать СОЖ Резать с принудит.подачей - Использовать метчик с улучшенными свойствами направляющей Согласовать скорость резания - Оптимизировать СОЖ Обеспечить подходящую СОЖ в достаточном количестве
2 Резьба осевая подточка	Метчики со спиральными канавками используются со слишком сильным усилием врезания Метчики с подточкой типа "В" имеют слишком малое усилие врезания	 Метчики при врезании только слегка прижать. Метчик должен сразу переходить в зону компенсации хода резьбонарезного патрона ■ Для обработки метчиками с подточкой или левой спиральной канавкой требуется усиленное осевое нажатие при врезании. Удерживать метчик в зоне компенсации
З Резьба слишком узкая	Допуск метчика не соответствует данным чер жа и/или резьбового калибра Не верно подобран тип метчика Метчик обрабатывает с ошибкой допуска (проходной калибр-пробка) Ошибка хода шпинделя станка	с соответствующим допуском Использовать метчик, рекомендуемый для данного обрабатываемого материала Предотвращение сильных осевых усилий

Ошибки и проблемы обработки с новыми метчиками

Проблема	Причина	Решение
- April Control		
4 Поверхность резьбы рваная	 Геометрия для данного применения не пригодна Слишком высокая скорость резания СОЖ или подвод СОЖ недостаточный Скопление стружки Предварительно просверленное отверстие мало В вязких, но твердых материлах слишком высокая нагрузка на инструмент или слишком большой шаг Нарост на режущей кромке Сваривание материала 	 Использовать метчик, рекомендуемый для данного обрабатываемого материала Уменьшить скорость резания - Оптимизировать смазку Обеспечить подходящую СОЖ в достаточном количестве Применить соответствующий тип метчика Изготовить отверстие под резьбу с необходимым диаметром, см. табл. "Диаметры отверстий под резьбу" в общей технической части Использование нескольких метчиков из набора Использовать метчики с улучшенной поверхностью Оптимизировать СОЖ
5 Стойкость	■ Наличие упрочнения предварительного от-	■ - Проверить остроту режущей кромки
низкая	верстия Все причины см. в: "Поверхность резьбы рваная" Скопление стружки	- Выполнить термообработку поверхности ■ Все ошибки см. в: "Поверхность резьбы рваная" ■ Применить соответствующий тип метчика
6 Поломка инструмента	Предварительно просверленное отверстие мало	■ Изготовить отверстие под резьбу с необходи-
при врезании или выходе	 Зубья заборной части перегружены Метчик бьет в основание отверстия под резьбу - отсутствие или неправильное отверстие под резьбу - позиционная или угловая ошибка отверстия под резьбу - твердость инструмента для данной обработки непригодна - геометрия реж.кромки для данной обработки непригодна 	мым диаметром, см. табл. "Диаметры отверстий под резьбу" в общей технической части (для глухого или сквозного отверстия) - проверить длину заборной части (для глухого или сквозного отверстия) - увеличить число зубьев заборной части посредством большего количества стружечных канавок - использовать комплект метчиков - проверить глубину отверстия - использовать резьбонарезные патроны с компенсацией длины - использовать предохранительную муфту - проверить угол отверстия под резьбу - обратить внимание на крепление инструмента. - использовать резьбонарезные патроны с компенсацией несоосности (плавающий патрон) - проверить сверло для отверстия под резьбу Использовать метчики, соответствующие условиям обработки

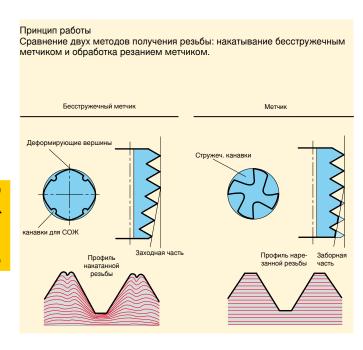
Ошибки и проблемы обработки с переточенными метчиками

Проблема	Причина	Решение
7 Резьба слишком большая	 Имеется заусенец Геометрия режущей части (угол заборной части, передний угол и задний заборный угол, а также угол подточки) не соблюдена 	 Шлифовать заусенец При переточке учитывать технические данные. Соблюдать указания по переточке
8 Резьба слишком узкая	 Изношенная поверхность не достаточно чисто перешлифована Занижен размер метчик после 	 ■ Еще раз переточить или использовать новый инструмент. Соблюдать макс. предел переточки ■ Достигнут макс. предел переточки. Использо-
	переточки	вать новые метчики
-	■ Имеется заусенец	■ Шлифовать заусенец
9 Поверхность резьбы рваная	Геометрия режущей части (угол заборной части, передний угол и задний заборный угол, а также угол подточки) не соблюдена Шероховатость поверхности на переточенных метчиках слишком высокая Образование нароста на	 ■ При переточке учитывать технические данные. Соблюдать указания по переточке ■ Еще раз переточить или использовать новый инструмент. Соблюдать инструкцию по переточке! ■ Удалить нарост
	боковых сторонах профиля резьбы	
10 Стойкость низкая	 Геометрия режущей части (угол заборной части, передний угол и задний заборный угол, а также угол подточки) не соблюдена Потеря твердости метчика из-за теплового воздействия при переточке Свойства поверхности метчика утрачены 	 При переточке учитывать технические данные. Соблюдать указания по переточке Проверить качество шлифовальных кругов - Проверить подачу СОЖ Нанести новое покрытие - проверить покрытие для обрабатываемого
		материала

Обработка резьбы пластической деформацией

Бесстружечные метчики, также именуемые как раскатники или метчики для выдавливания резьбы, представляют собой инструмент для бесстружечного изготовления внутренней резьбы. В отличие от резьбонарезания, при котором происходит обработка материала резанием, при накатывании речь идет о пластическом методе обработки под давлением для изготовления внутренней резьбы, когда материал подвергается холодной деформации, без прерывания т.н. "прохождения волокон".

Согласно DIN 8583 накатывание резьбы обозначается как "Обработка резьбы с помощью пластической деформации заготовки с помощью инструмента с винтовой рабочей поверхностью". Винтовая, в радиальном сечении полигональная, рабочая часть бесстружечного метчика "ввинчивается" с равномерной подачей, соответствующей шагу резьбы, в предварительно просверленное отверстие. При этом профиль резьбы плавно выдавливается зубьями заходной части (заборной части) метчика в отверстие заготовки. Вследствие увеличения силы врезания зуба в материал происходит пластическая деформация с выдавливанием материала, который "протекает" вдоль боковой поверхности зуба в свободное пространство основания зуба и формирует таким образом внутренний диаметр резьбы. Посредством процесса текучести на вершинах профиля резьбы образуются характерные формовочные карманы (канавки).


Выбор диаметра предварительно просверленного отверстия сильно зависит от пластичности материала, геометрии заготовки и необходимой глубины резьбы. По сравнению с диаметром отверстия для нарезания резьбы, в данном случае он должен быть больше. С увеличением диаметра предварительно просверленного отверстия уменьшается нагрузка на инструмент при одновременном увеличении периода стойкости. Нагрузочная способность резьбы вследствие непрерывного прохождения волокна и упрочения материала уже достаточна при накатывании только 50 % профиля резьбы (значение для резьбы в стальных деталях).

Получение неполного профиля резьбы типично для деталей с накатанной резьбой. Полностью сформированный профиль не оказывает влияния на прочность резьбы. Нужная степень накатки резьбы в случае необходимости должна определяться при испытании.

Решающее значение при накатывании резьбы приобретает смазка. Смазка предотвращает наращивание материала на рабочей поверхности инструмента и гарантирует, что крутящий момент не будет слишком большим. Поэтому смазка должна применяться всегда! Для смазки при накатывании резьбы лучше всего подходят смазочные, графитосодержащие СОЖ или масла, использующиеся при обработке материалов давлением. Всегда работайте по принципу: "Хорошая смазка - половина накатки!"

Преимущества накатанной резьбы:

- Не образовывается стружка.
- Резьба в сквозном и глухом отверстии может быть изготовлена одним и тем же инструментом.
- Может обрабатываться широкий спектр материала.
- Вероятность среза резьбы исключается.
- Исключаются ошибки шага резьбы и угла профиля в том виде, в каком они могут появиться в нарезанной резьбе.
- Накатанная внутренняя резьба благодаря т.н. "непрерывному прохождению волокон" и упрочнению поверхности профиля зуба имеет повышенную прочность.
- Хорошая шероховатость обработанной поверхности.
- Бесстружечные метчики могут работать с более высокой частотой вращения, т.к. пластичность многих материалов возрастает с увеличением скорости обработки. На стойкость это не оказывает отрицательного влияния.
- Незначительная опасность поломки благодаря жесткой конструкции инструмента.

Бесстружечные метчики "Profile" фирмы Gühring Особенности и преимущества

Бесстружечные метчики изготовленные путем шлифования имеют на своей поверхности более или менее микроскопические мелкие "канавки". Это относится также к рабочей части, которая должна выполнять функцию накатывания.

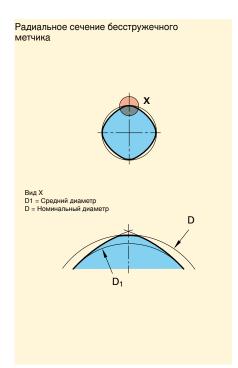
Данные неровности поверхности (шероховатость), увеличивая трение между инструментом и деформируемым материалом, а в связи с этим температуру, отрицательно сказываются на необходимом крутящем моменте и не в последнюю очередь на износе деформируемых вершин бесстружечного метчика. Также "канавки" способствуют наращиванию деформируемого материала на поверхности зубьев бесстружечного метчика. В данном случае речь идет о наросте.

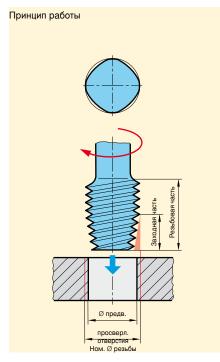
Благодаря специальному методу улучшения шероховатости поверхности, на новых бесстружечных метчиках Profile фирмы Gühring "канавки" не наблюдаются. Это показывают исследования и проведенные в условиях производства тесты на стойкость инструмента с различными обрабатываемыми материалами.

Пользователь получает преимущество от этого специального метода благодаря увеличению срока службы и более высокой скорости резания. Период стойкости, в зависимости от обрабатываемого материала и условий применения, значительно увеличивается. Увеличение вдвое периода стойкости не является редкостью.

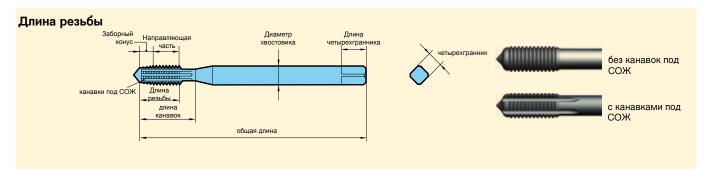
Улучшенная шероховатость поверхности положительно сказывается не только на инструменте без покрытия. Именно инструмент с покрытием особенно выигрывает от нового метода. Наружный контур и заборная часть в большой степени определяют производительность инструмента. Многочисленные испытания показали, что

наши бесстружечные метчики Profile с оптимальной геометрией и числом деформируемых вершин имеют высокую стойкость и размерную точность.


Еще один важный фактор увеличивающий качество наших бесстружечных метчиков - изготовление инструмента за один проход и одним шлифкругом, а также правка одним специальным роликом. Ошибка шага в вершине хода при переходе заборной части, как это обычно происходит при шлифовании, вследствие этого исключается.



Зуб обычного бесстружечного метчика


Оптимизированная поверхность бесстружечного метчика Profile фирмы Gühring

Основные геометрические параметры инструмента и резьбовых соединений

	Вид центра на рабочей части		
Диапазон диаметров бесстружечного метчика мм	с формой заточки А, С, D, E	с формой заточки В	Вид центра на хвостовике
≤ 5,6	1	1	456
> 5,6 12,8	1 2 3	1 2 3	4 5 6
> 12,8	3	3	6

Допуски и посадки для резьбы

Пары внутрненней и наружной резьбы отделяются друг от друга косой чертой, н-р, 6H/6g (гайка/болт). Выбор посадки в соответствии с выбранным резьбовым соединением. Поля допусков, установленные в классах точности точный, средний и грубый, относятся к трем величинам длин свинчивание резьбы нормальной (N), короткой (S) и длинной (L). В основном, для выбора класса точности резьбы действуют следующие правила:

Класс точности точный (S):

Для точной резьбы, если только допускаются изменения в характере посадки.

Длина свинчивания резьбы

Длина свинчивания также оказывает влияние на точность резьбового соединения. Система допусков ISO была специально адаптирована для среднего диаметра резьбы для трех длин свинчивания:

S (Short)

= короткая длина свинчивания резьбы

N (Normal)

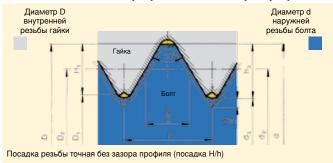
= нормальная длина свинчивания резьбы

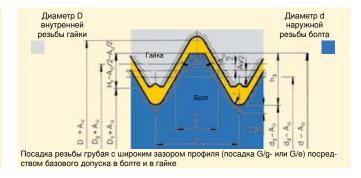
L (Long)

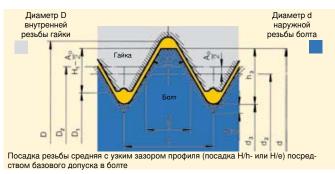
= длинная длина свинчивания резьбы

Класс точности средний (N):

Общее применение


Класс точности грубый (L):


Если не предъявляются особые требования к точности и в случаях, когда могут возникнуть трудности в производстве, н-р, для резьбы в горячекатанных стержнях, при обработке резьбы в глубоких базовых отверстиях.


При нормальной длине свинчивания N необходимо выбирать следующие парные сочетания:


Для увеличения прочности резьбового соединения мы рекомендуем для короткой длины свинчивания выбирать более узкие парные сочетания.

Резьбовые посадки при различном зазоре профиля

Диаметр предварительно просверленного отверстия

При обработке бесстружечным метчиком диаметр предварительно просверленного отверстия влияет на форму резьбы. Маленький диаметр приводит к слишком плотной накатке профиля резьбы и этого нельзя допускать, так как он может стать причиной поломки инструмента. Слишком

большой диаметр отверстия можно принять в определенных допусках, так как сформированная резьба уже начиная с 50 % накатанного профиля имеет достаточную нагрузочную способность.

Ø предварительно просверленного отверстия большой:

- рофиль резьбы не сформирован
- большой формовоч. карман (канавка)
- слишком низкая высота профиля

оптимальный Ø предварительно просверленного отверстия:

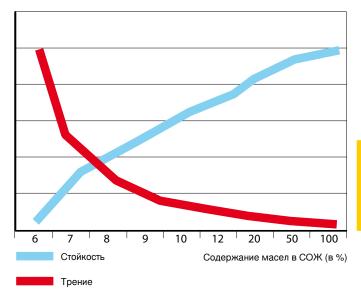
- резьба полностью сформирована
- небольшой формовоч. карман (канавка)
- оптимальная высота профиля

Ø предварительно просверленного отверстия мал:

- профиль резьбы слишком перекатан
- нет формовочного кармана (канавки)
- высота профиля очень большая

СОЖ для бесстружечного метчика

Для бесстружечного метчика основной задачей СОЖ является смазка. Чем в СОЖ больше содержание масла, тем выше стойкость инструмента.


Различают два вида СОЖ:

СОЖ на основе масла

Это минеральные масла с лучшими смазочными свойствами. Они уменьшают трение и достигают максимальной стойкости.

СОЖ смешиваемая с водой

Эти эмульгированные СОЖ в качестве концентрата перед применением смешиваются с водой для получения эмульсии. Для процесса накатывание концентрация не должна быть меньше 6%. Концентрация свыше 12% является идеальным решением для накатывания резьбы бесстружечными метчиками с достижением большого периода стойкости.

Ошибки и проблемы при обработке новыми бесстружечными метчиками

Проблема Причина Решение Плохой зажим инструмента Использовать патрон с минимальной 1 Резьба слишком компенсацией большая Бесстружечный метчик с короткой заходной Использовать бесстружечный метчик с длинной заходной частью ■ Правильно выбрать диаметр отверстия Диаметр предварительно просверленного 2 Резьба отверстия слишком большой под резьбу согласно таблицы слишком мало раскатана Предварительно просверленное отверстие Правильно выбрать диаметр отверстия 3 Резьба перекатана имеет меньший диаметр под резьбу согласно таблицы Образование нароста на инструменте Увеличить содержание масла в СОЖ или 4 Плохая шероховатость использовать масло обработанной резьбы СОЖ с очень низким содержанием масла Увеличить содержание масла в СОЖ или использовать масло ■ СОЖ с очень низким содержанием масла ■ Увеличить содержание масла в СОЖ или 5 Стойкость очень низкая использовать масло Предварительно просверленное отверстие Правильно выбрать диаметр отверстия имеет меньший диаметр под резьбу согласно таблицы Слишком высокая скорость резания Согласовать скорость резания Грязная СОЖ Проверить фильтры очистки

Ошибки и проблемы обработки новыми бесстружечными метчиками

Проблема	Причина	Решение
6 Поломка инструмента	СОЖ с очень низким содержанием масла	 Увеличить содержание масла в СОЖ или использовать масло
11.1	Предварительно просверленное отверстие имеет меньший диаметр	 Правильно выбрать диаметр отверстия под резьбу согласно таблицы
	■ Неправильное крепление инструмента	■ Проверить инструментальную оснастку

инстру

Резьбовое фрезерование и его преимущества

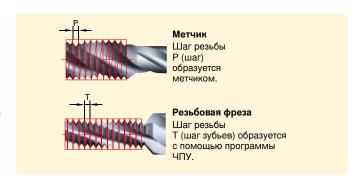
Резьбофрезерование, так же как нарезание резьбы метчиком, является обработкой резанием с образованием стружки. При выборе метода обработки резьбы необходимо обратить внимание: на размер обрабатываемой резьбы, т.к. стоимость метчика большего размера ставит под сомнение экономичность его применения, кроме того, для нарезания резьбы метчиком с большим размером необходимо увеличивать мощность привода станка; на возможность обрабатывать заготовку с высокой плотностью или прочностью. Данные условия могут иметь решающее значение в выборе метода резьбового фрезерования.

При нарезании резьбы метчиком профиль резьбы образуется посредством врезания профиля резьбы инструмента в обрабатываемую деталь. При резьбофрезеровании, профиль резьбы образуется за счет контура резьбовой части фрезы, а шаг резьбы образуется за счет осевого движения инструмента. Контур резьбовой части инструмента непрерывно нарезает резьбу двигаясь по оси отверстия на величину шага, создавая таким образом профиль резьбы.

Существенный факт состоит в том, что скорость резания и значения подачи могут быть выбраны независимо друг от друга. Эти параметры значительно влияют на принцип стружкообразования и нагрузку на инструмент. При резьбофрезеровании, в отличии от нарезания резьбы метчиком, образуется лишь короткая стружка в виде запятой.

Нет необходимости менять направление вращения шпинделя станка для вывода инструмента. Резьбовая фреза имеет контур резьбы без шага винтовой спирали. Инструмент опускается в отверстие на величину длины резьбы. Резьбовая фреза врезается до номинального диаметра резьбы.

Образование резьбы происходит за счет круговой интерполяции на 360с и осевого движения фрезы на шаг резьбы за один виток.


С помощью одной резьбовой фрезы можно нарезать резьбу с разными диаметрами (или допусками) с одинаковым шагом. Одним и тем же инструментом можно нарезать правую и левую резьбу. Так как при резьбовом фрезеровании скапливается только очень короткая стружка, не возникает проблем с ее удалением.

При резьбовом фрезеровании возможно использовать одинаковую геометрию инструмента для нескольких видов деталей. Это значительно сокращает число используемых инструментов. В отличии от обработанной резьбы метчи-

ком, при фрезеровании резьба полностью сформирована на всей длине, за счет того что инструмент не имеет заборного конуса.

Сравнение методов обработки резьбы метчиком и резьбовой фрезой

В отличии от метчика, имеющего, фактически, один зуб спиральной формы, резьбовая фреза имеет несколько последовательно расположенных зубьев, которые не образуют спирали и соответственно не наклонены. Это существенное отличие в форме инструмента позволяет производить разные виды работ, которые описывались ранее.

Программа поставок стандартной продукции

За исключением шага резьбы основные геометрические параметры резьбовой фрезы аналогичны параметрам метчика. Резьбовые фрезы также характеризуются габаритными размерами и длиной режущей части. К габаритным размерам относятся длина резьбы l_2 и общая длина l_1 .

Различают резьбовые фрезы по наличию заниженной шейки, а также ступени для обработки фаски. К размерам режущей части резьбовой фрезы относятся рабочая длина 14, профиль стружечной канавки, ширина зуба и форма заточки. Как и для метчиков, рабочая длина включает в себя выход стружечной канавки. Ее профиль аналогичен профилю канавки у метчика. Стружечные канавки могут быть прямыми или спиральными, и не должны быть такими же большими как у метчиков, так как в этом случае образуется более мелкая стружка. Стружка во время обработки не остается в канавках и, тем самым, не вызывает пакетирования. Поэтому ширина зуба больше, чем у метчиков. За счет шлифования задней поверхности образуется необходимый для фрез задний угол.

Типы фрез фирмы Gühring

Резьбовые фрезы без фаски TM SP

Фреза со спиральной стружечной канавкой, с каналами под СОЖ, простой вариант фрезерования резьбы определенного типоразмера.

Виды резьбы: M, G, NPT, NPTF

Профиль зуба

Профиль зуба соответствует как правило профилю образуемой нитки резьбы. В некоторых случаях есть необходимость в коррекции профиля зуба. Это происходит в том случае, когда диаметр фрезеруемой резьбы не соответствует диаметру резьбовой фрезы. Резьбовая фреза может фрезеровать резьбу различного диаметра. Но изменить шаг резьбы невозможно.

Резьбовые фрезы для диапазона резьбы TMU SP

Фреза со спиральной стружечной канавкой, с каналами под СОЖ, для обработки различных диаметров резьбы с определенным шагом.

Виды резьбы: M/MF, G, NPT, NPTF

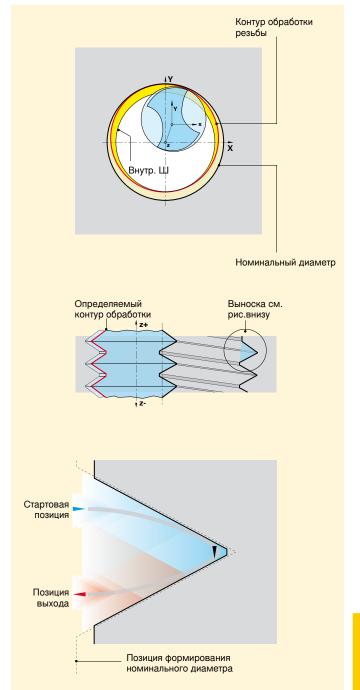
Резьбовые фрезы с фаской TMC SP

Фреза с обработкой фаски 45°, со спиральной стружечной канавкой, с каналами под СОЖ, для обработки фаски и фрезерования резьбы определенного типоразмера.

Виды резьбы: M, MF, G, UNC, UNF, NPT, NPTF

Комбинированная резьбовая фреза-сверло DTMC SP

Двухзубая комбинированная фреза-сверло с обработкой фаски 45°, со спиральной стружечной канавкой, с/без каналов под СОЖ, для сверления отверстий под резьбу, обработки фаски и фрезерования резьбы определенного типоразмера.

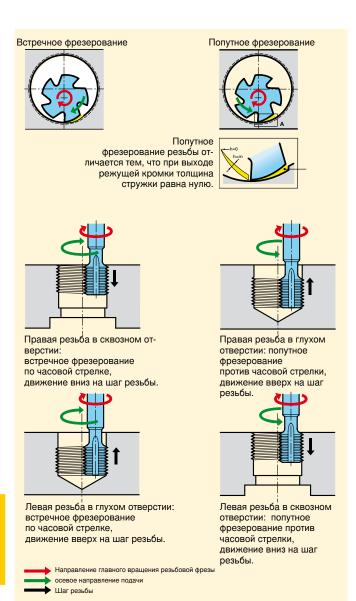

Виды резьбы: М, МГ

Специальные резьбовые фрезы

Дополнительно к этим четырем стандартным типам мы поставляем по запросу:

- резьбовые фрезы TM SP и TMC SP с длиной резьбы 3xD
- комбинированные резьбовые фрезы-сверла DTMC SP трехзубые, с и без каналов под СОЖ, с длиной резьбы 1,5xD, 2xD, 2,5xD и 3xD
- цельные твердосплавные резьбовые фрезы по Вашему желанию и чертежам

Методика и технология фрезерования резьбы

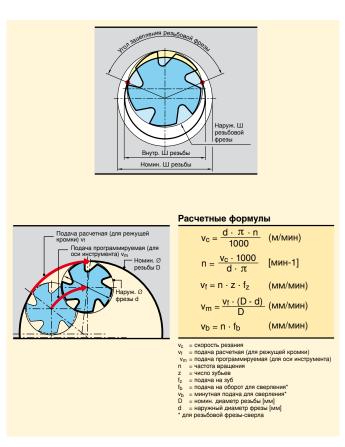

Схемы обработки (встречное/попутное фрезерование)

В связи с тем, что резьбовые фрезы изготавливаются с правой резьбой, направление вращения при резьбофрезеровании в основном правое. При изменении осевого направления подачи, посредством встречного или попутного фрезерования, могут быть изготовлены все комбинации резьбы.

Условия обработки, т.к. тип отверстия (глухое/сквозное), положение инструмента (горизонтальное/вертикальное), вид и способ подвода СОЖ (и соответственно вывода стружки) влияют на выбор вида фрезерования.

Для резьбофрезерования необходимо по возможности использовать встречное фрезерование с целью уменьшения силы резания, улучшения стружкообразования, увеличения стойкости инструмента и шероховатости обработанной по-

Попутное фрезерование отличается тем, что из под режущей кромки выходит стружка с величиной h=0

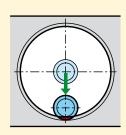

Соотношение зоны зацепления и способа врезания

Если соблюдается соотношение диаметра фрезы к номинальному диаметру резьбы свыше 70 %, то независимо от глубины профиля резьбы исключается искажение профиля обработанной резьбы. Этот факт хорошо проявил себя на практике.

Из этого чертежа видно, что диаметр резьбовой фрезы и глубина профиля определяют угол зацепления относительно диаметра резьбы.

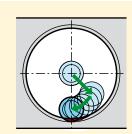
Подача на режущей кромке резьбовой фрезы рассчитывается через скорость резания (частоту вращения) и подачу на зуб. При линейном перемещении подача на реж. кромке равна подаче в центре инструмента. Но винтовая интерполяция перемещается по круговой траектории. Так как система ЧПУ для расчета траектории движения использует центр инструмента как точку, необходимо запрограммировать команду коррекции скорости (функция внесения коррекции). Если такая функция отсутствует или программируется относительно средней точки, то подачу необходимо предварительно пересчитать.

Система ЧПУ всегда показывает скорость точки центра инструмента. При сухой обработке контроль осуществляется легко. В случае ошибки расчетов коррекции скорость движения фрезы в несколько раз превышает необходимую подачу, что, как правило, приводит к поломке инструмента.

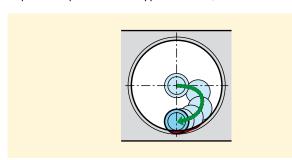


Методика и технология фрезерования резьбы

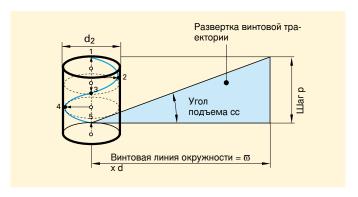
Траектории для врезания резьбовыми фрезами


Прямолинейное врезание

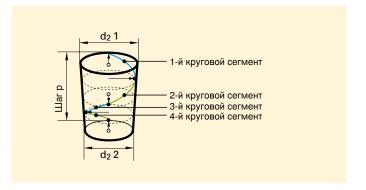
При прямолинейном врезании резьбовой фрезы в материал возникает очень большой угол охвата по фрезе, который ведет к очень длинной стружке и высокой нагрузке на инструмент. Это в особенности заметно в случае с незначительной разницей диаметров между размером отверстия и фрезой. Кроме того, при данном методе существует небольшой период контакта. Для точной и мелкой резьбы такой метод не пригоден.


Врезание по траектории с квадрантом 90°

Для врезания на 90° при незначительной разнице диаметров между инструментом и резьбой, большая часть объема стружки отводится на прямом участке врезания. Поэтому этот метод рекомендуется только для относительно большой разницы диаметров отверстия и резьбовой фрезой (резьбовая фреза TMU). Преимуществом такого врезания является простое программирование и относительно короткие траектории.


Врезание по траектории с полукругом 180°

Для врезания на 180° нагрузка на инструмент является самой минимальной, т.к. угол охвата по всему входному контуру относительно небольшой. Данный метод с программно-технической точки зрения несколько затратный, но он очень хорошо зарекомендовал себя при обработке резьбовыми фрезами ТМ, ТМС и DTMC.


Винтовая интерполяция (цилиндрическая резьба)

Винтовая интерполяция является суммой двух движений: круговой интерполяции и линейного движения. В зависимости от их сочетания и изменения направлений можно нарезать различные виды резьбы.

Винтовая интерполяция (коническая резьба)

Для того, чтобы с помощью резьбовых фрез обработать коническую резьбу NPT необходимой точности формы отверстия, при написании программы ЧПУ следует учесть величину конуса. В отличии от цилиндрической резьбы, необходимо рассчитывать траекторию движения не на 360°, а на четыре круговых сегмента. Обязательно на каждом сегменте вносится корректировка на величину конуса.

Резьбовые фрезы без обработки фаски Тип TM SP

Пример обработки

Покрытие:	TiCN
Резьба:	M12
Шаг:	1,75 мм
Глубина резьбы:	24 MM / 2 x D

Обрабат. материал:	St 52
Скорость резания:	100 м/мин
Подача на зуб:	0.08 мм
Время на обработку:	2,7 сек.

	Код ЧПУ:	Открытый текст
	N10 M6T1	Вызов инструмента
	N20 G90 G54 G00 X0.000 Y0.000	Смещение нулевой точки
(ID 1830 77 000 53 199 W3 D1	Перемещение на стартовую позицию центр инструмента в центр отверстия и включение вращения инструмента
		Перемещение ускоренным ходом на стартовую позицию фрезерования резьбы центр инструмента в центре отверстия
	N50 G91	Переключение на приращение
	N60 G42 G01 X0.000 Y4.975 F1000	Компенсация радиуса режущей кромки
•	2 N/O GO/ XO OOO Y- 10 9/9 10 000 1-9 488 /-0 /93 F8/ 1	Дуговая траектория врезания 180° на глубину профиля, начало фрезерования резьбы
•		Цикл фрезерования резьбы 360° с осевым перемещением инструмента на шаг резьбы в направлении Z
•	60 INSU CIUZ AU UUU FIU SZO IU UUU JO 400 Z-U ZOO EJOU I	Дуговая траектория выхода 180° в центр отверстия резьбы, окончание фрезерования резьбы
	N100 G40 G01 X0.000 Y-4.975 F1000	Отключить компенсацию радиуса реж.кромки
	N110 G90	Переключение на Абсолют
	♥ N ZU (180 (19.5 (100 Z Z 000)	Выход из отверстия на стартовую позицию центр инструмента в центре отверстия
	N130 M30 M95	Окончание

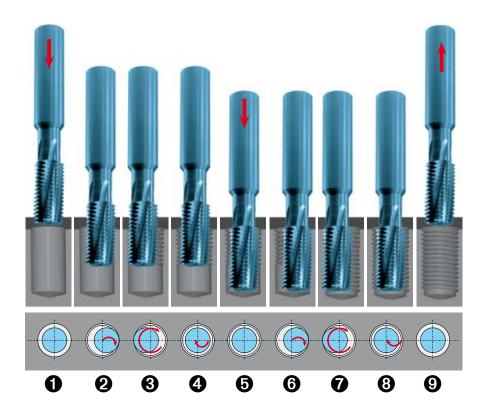
Резьбовые фрезы для диапазона резьб Тип TMU SP - 1 цикл фрезерования

Пример обработки

Покрытие:	без покрытия
Резьба:	M24
Шаг:	1,5 мм
Глубина резьбы:	24 MM / M16x1.5

Обрабат. материал:	AlSi7
Скорость резания:	220 м/мин
Подача на зуб:	0,15 мм
Время на обработку:	1,7 сек.

•••	пример программирования.		
	Код ЧПУ:	Открытый текст	
	N10 M6T1	Вызов инструмента	
	N20 G90 G54 G00 X0.000 Y0.000	Смещение нулевой точки	
0	N30 Z2.000 S3199 M3 D1	Перемещение на стартовую позицию центр инструмента в центр отверстия и включение вращения инструмента	
	N40 G00 Z-21.725	Перемещение ускоренным ходом на стартовую позицию фрезерования резьбы центр инструмента в центре отверстия	
	N50 G91	Переключение на приращение	
	N60 G42 G01 X0.000 Y4.975 F1000	Компенсация радиуса режущей кромки	
6	N70 G02 X0.000 Y-10.975 I0.000 J-5.488 Z-0.263 F87	Дуговая траектория врезания 180°, начало фрезеров. резьбы	
€	N80 G02 X0.000 Y0.000 I0.000 J6.000 Z-1.750 F175	Цикл фрезерования резьбы 360° с осевым перемещением инструмента на шаг резьбы в направлении Z	
4	N90 G02 X0.000 Y10.975 I0.000 J5.488 Z-0.263 F350	Дуговая траектория выхода 180° в центр отверстия резьбы, окончание фрезерования резьбы	
	N100 G40 G01 X0.000 Y-4.975 F1000	Отключить компенсацию радиуса реж.кромки	
	N110 G90	Переключение на Абсолют	
E	N120 G80 G53 G00 Z2.000	Выход из отверстия на стартовую позицию центр инструмента в центре отверстия	
	N130 M30 M95	Окончание	

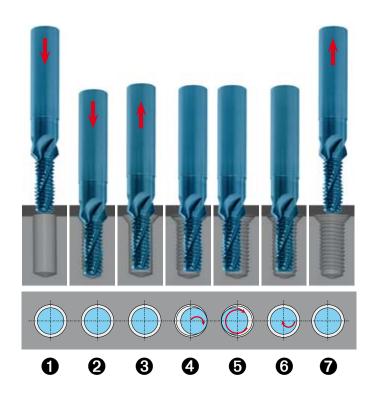

Операции

Резьбовые фрезы для диапазона резьб Тип TMU SP - 2 цикла фрезерования

Пример обработки

Покрытие:	без покрытия
Резьба:	M24
Шаг:	1,5 мм
Глубина резьбы:	46 мм / М16х1,5

Обрабат. материал:	AlSi7
Скорость резания:	220 м/мин
Подача на зуб:	0,15 мм
Время на обработку:	3,5 сек.

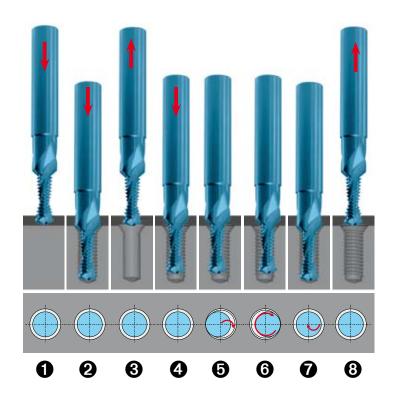

	Код ЧПУ:	Открытый текст	
	N10 M6T1	Вызов инструмента	
	N20 G90 G54 G00 X0.000 Y0.000	Смещение нулевой точки	
•	N30 Z2.000 S4390 M3 D1	Перемещение на стартовую позицию центр инструмента в центр отверстия и включение вращения инструмента	
	N40 G00 Z-21.550	Перемещение ускоренным ходом на стартовую позицию фрезерования резьбы центрично в отверстии под резьбу	
	N50 G91	Переключение на приращение	
	N60 G42 G01 X0.000 Y7.975 F1000	Компенсация радиуса режущей кромки	
•	N70 G02 X0.000 Y-19.975 I0.000 J-9.988 Z-0.225 F552	Дуговая траектория врезания 180°, начало 1-ого цикла фрезерования резьбы	
•	N80 G02 X0.000 Y0.000 I0.000 J12.000 Z-1.500 F1104	1-ый цикл фрезеров. резьбы, цикл фрезеров. резьбы 360° с осевым перемещением инструмента на шаг резьбы в направлении Z	
4	N90 G02 X0.000 Y19.975 I0.000 J9.988 Z-0.225 F2209	1-ый цикл фрезерования резьбы, дуговая траектория выхода 180° в центр отверстия	
•	N100 G01 X0.000 Y0.000 Z-20.550 F1000	Перемещение ускоренным ходом на стартовую позицию центр инструмента в центре отверстия для 2-ого цикла фрезеров. резьбы	
№ N110 G02 X0.000 Y-19.975 I0.000 J-9.988 Z-0.225 F552 Дуговая траектория врезания 180°, начало 2-		Дуговая траектория врезания 180°, начало 2-ого цикла фрезерования резьбы	
•	N120 G02 X0.000 Y0.000 I0.000 J12.000 Z-1.500 F1104	2-ой цикл фрезеров. резьбы, цикл фрезеров. резьбы 360° с осевым перемещением инструмента на шаг резьбы в направлении Z	
•	N130 G02 X0.000 Y19.975 I0.000 J9.988 Z-0.225 F2209	2-ой цикл фрезерования резьбы, дуговая траектория выхода 180° в центр отверстия	
	N140 G40 G01 X0.000 Y-7.975 F1000	Отключить компенсацию радиуса режущей кромки	
	N150 G90	Переключение на Абсолют	
•	N160 G80 G53 G00 Z2.000	Выход из отверстия на стартовую позицию центр инструмента в центре отверстия	
	N170 M30 M95	Окончание	

Резьбовые фрезы с обработкой фаски Тип TMC SP

Пример обработки

Покрытие:	TiCN
Резьба:	M16
Шаг:	1,5 мм
Глубина резьбы:	40 мм / M16x1.5

Обрабат. материал:	16MnCr5
Скорость резания:	100 м/мин
Подача на зуб:	0,06 мм
Время на обработку:	6,4 сек.

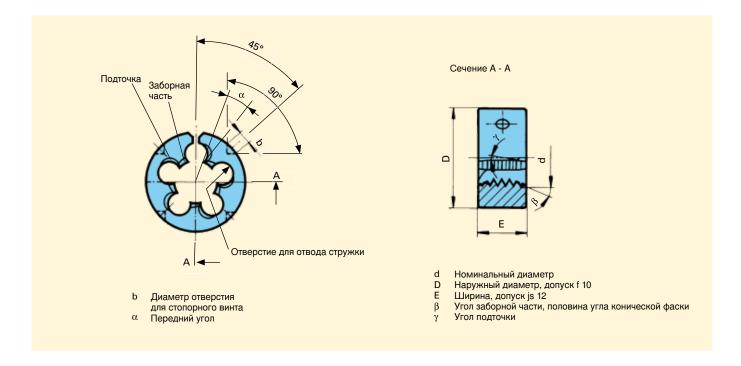

	Код ЧПУ:	Открытый текст				
	N10 M6T1 Вызов инструмента					
	N20 G90 G54 G00 X0.000 Y0.000	Смещение нулевой точки				
•	N30 Z2.000 S497 M3 D1	Перемещение на стартовую позицию центр инструмента в центр отверстия и включение вращения инструмента				
	N40 G00 X0.000 Y0.000 Z-41.300	Перемещение ускоренным ходом на стартовую позицию для обработки фаски				
e	N50 G01 X0.000 Y0.000 Z-43.200 F119	Цековка фаски 90°				
181 NDU (100 7-38 USU 57487		Перемещение ускоренным ходом на стартовую позицию фрезерования резьбы центр инструмента в центре отверстия				
	N70 G91	Переключение на приращение				
	N80 G42 G01 X0.000 Y6.400 F1000	Компенсация радиуса режущей кромки				
6	N90 G02 X0.000 Y-14.400 I0.000 J-7.200 Z-0.225 F60	Дуговая траектория врезания 180°, начало фрезерования резьбы				
•	N100 G02 X0.000 Y0.000 I0.000 J8.000 Z-1.500 F119	Цикл фрезерования резьбы 360° с осевым перемещением инструмента на шаг резьбы в направлении Z				
0	N110 G02 X0.000 Y14.400 I0.000 J7.200 Z-0.225 F239	Дуговая траектория выхода 180° в центр отверстия резьбы, окончание фрезерования резьбы				
	N120 G40 G01 X0.000 Y-6.400 F1000	Отключить компенсацию радиуса режущей кромки				
	N130 G90	Переключение на Абсолют				
•	N140 G80 G53 G00 Z2.000	Выход из отверстия на стартовую позицию центр инструмента в центре отверстия				
	N150 M30 M95	Окончание				

Комбинированная резьбовая фреза-сверло Тип DTMC SP

Пример обработки

Покрытие:	без покрытия
Резьба:	M8
Шаг:	1,25 мм
Глубина резьбы:	16 м / 2 x D

Обрабат. материал:	GGG 40	
Скорость резания:	100 м/мин	
Подача на зуб:	0,06 мм	
Время на обработку:	5,3 сек.	


	Код ЧПУ:	Открытый текст	
	N10 M6T1	Вызов инструмента	
	N20 G90 G54 G00 X0.000 Y0.000	Смещение нулевой точки	
0	N30 Z2.000 S5013 M3 D1	Перемещение на стартовую позицию центр инструмента в центр отверстия и включение вращения инструмента	
	N40 G01 X0.000 Y0.000 Z-1.000 F251	Центрирование на 50% от рекомендуемой подачи	
0	N50 X0.000 Y0.000 Z-19.825 F501	На полной подаче сверление отверстия под резьбу и цековка фаски 90°	
8	N60 G00 X0.000 Y0.000 Z0.000 S5013	Полный вывод инструмента из отверстия	
4	N70 Z-14.375	Перемещение ускоренным ходом на стартовую позицию фрезерования резьбы центр инструмента в центре отверстия	
N80 G91 Переключение на приращение		Переключение на приращение	
	N90 G42 G01 X0.000 Y3.175 F1000	Компенсация радиуса режущей кромки	
6	N100 G02 X0.000 Y-7.175 I0.000 J-3.588 Z-0.188 F62	Дуговая траектория врезания 180°, начало фрезерования резьбы	
6	N110 G02 X0.000 Y0.000 I0.000 J4.000 Z-1.250 F124	Цикл фрезерования резьбы 360° с осевым перемещением инструмента на шаг резьбы в направлении Z	
0	N120 G02 X0.000 Y7.175 I0.000 J3.588 Z-0.188 F248	Дуговая траектория выхода 180° в центр отверстия резьбы, окончание фрезерования резьбы	
	N130 G40 G01 X0.000 Y-3.175 F1000	Отключить компенсацию радиуса режущей кромки	
	N140 G90	Переключение на Абсолют	
8	N150 G80 G53 G00 Z2.000	Выход из отверстия на стартовую позицию центр инструмента в центре отверстия	
	N160 M30 M95	Окончание	

Ошибки и проблемы обработки новыми резьбовыми фрезами

Проблема	Причина	Решение
1 Слишком большая или	- Неправильный радиус в ЧПУ-программе и	
слишком маленькая резьба	следовательно неправильная траектория фрезерования	до достижения точного размера резьбы
2 Резьба не	Слишком высокая подача	Уменьшить подачу
цилиндрическая	■ Траектория попутного фрезерования при большой длине фрезерования	 Изменение направления фрезерования на встречное
3 Плохая поверхность	Слишком высокая скорость резания	Регулировать режимы резания
резьбы, следы дробления	 Неоптимальное крепление инструмента 	■ Повторная проверка крепления
Apoulous Parkets	или заготовки	инструмента и заготовки
4 Поломка инструмента	Ошибки в ЧПУ-программе	Повторная проверка ЧПУ-программы
	 Слишком высокие режимы резания 	■ Регулировать режимы резания
5 Низкая стойкость	Слишком высокие режимы резания	Регулировать режимы резания
	Применение инструмента без покрытия	■ Применение инструмента с покрытием
	■ Плохая смазка и плохой вывод стружки	■ Улучшить смазку, внутренний подвод СОЖ
6 Поломка инструмента	Проблема с выводом стружки при	■ Использование инструмента с внутренним
Поломка инструмента при обработке комбинированной фрезойсверлом	сверлении Слишком высокая подача при сверлении	подводом СОЖ Установить циклы вывода стружки

Основные геометрические параметры и термины

Передний угол

Для достижения высокого качества резьбы, передний угол должен подходить к обрабатывамой детали. Для заготовок с длинной резьбой должен использоваться большой передний угол резания, с короткой - маленький. Если в заказе не указаны параметры обрабатываемой детали, используем плашки с передним углом для стали средней прочности.

Забоная часть

Также как и у метчика делаем различие между длинной, средней и короткой заборной частью. Наши стандартные плашки изготовляются со средней, так называемой нормальной заборной частью, с длиной заборной части прибл. 1,75 х шаг. Нормальная заборная часть подходит для обработки стали средней прочности.

Плашки, устанавливамые на станки-автоматы, должны заказываться с подточкой, благодаря которой стружка уходит в направлении подачи, что предотвращает сильное скопление стружки в отверстии. Другими преимуществами плашки с подточкой являются также снижение вращающегося момента, более высокая стойкость, более высокое качество поверхности резьбы.

Длина заборной части плашки с короткой заборной частью прибл. от 1,25 х шаг. Специально сконструированы для резьбы с малой величиной сбега. Поставляется под заказ. Цена по запросу.

Для обработки труднообрабатываемых материалов рекомендуется, насколько позволяет геометрия обрабатываемой детали, необходимо использовать плашки с длинной заборной частью, т.е. с длиной заборной части прибл. от $2,25 \times 10^{-2}$ х шаг. Поставляется под заказ. Цена по запросу.

Размеры допусков

Если в заказе не указаны размеры допусков, мы поставляем плашки стандартной точности для поля допуска 6h, 6g для метрической ISO-, Whitworth-, Whitworth-Rohr-, UNC-, UNF- и UNEF- резьбы. При необходимости, в программе поставок можно выбрать плашки с полями допуска 4h и 6e для метрических резьбы ISO.

Поле допуска 4h Класс допуска точный

Для винтов, поверхность которых должна оставаться без покрытия или только очень слабая обработка

поверхности.

Поле допуска 6h Класс допуска средний

Размер резьбы до 1,4 мм.

Поле допуска 6g Класс допуска средний

Для винтов, поверхность которых должна оставаться без покрытия или только очень слабая обработка

поверхности.

Поле допуска 6е Класс допуска средний

Для винтов с упрочненной по-

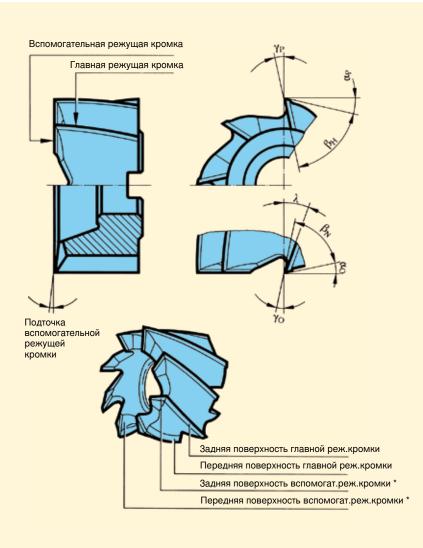
верхностью

Ошибки и проблемы обработки новым инструментом

Проблема	Причина	Решение	
1 Слишком большая или слишком маленькая резьба	 Плашка закреплена в плашкодержателе в наклонном положении Выбор неправильных допусков 	 Проверить еще раз плашку в держателе Выбрать плашку необходимой точности 	
2 Разрушение зуба	 ■ Блокировка стружки ■ Перегрузка зубьев через высокие режимы резания 	 Использовать плашку с подточкой заходной части Удлинить заборную часть 	
З Резьба имеет плохую поверхность	Низкая шероховатость резьбовой части плашкиНедостаточная смазкаНарост на режущей кромке	 Использовать шлифованные плашки Улучшить смазку Проверить и очистить боковую кромку резьбовой части плашки 	
4 Низкая стойкость	■ Несоответствие плашки для использования в конкретном случае.	 Использовать плашки из быстрорежущей стали с повышенным содержанием кобальта HSS-Е Применять инструмент с покрытием 	
5 Испорченная резьба	■ Зажало плашку	 Использовать плашку с прорезью 	

Опросный лист

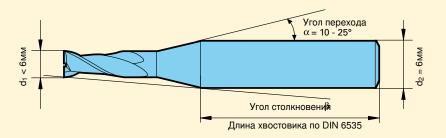
По всем вопросам подбора инструмента и/или решения Ваших проблем обработки просим скопировать опросный лист и в заполненном виде отправить по факсу Вашему контактному лицу на фирме Gühring.


□ Запрос □ Заказ Предложение №	Образец на испытание	
Заказчик		
Название фирмы	Контактное лицо	
Улица	Телефон	
Индекс, город	Факс	
Страна	e-Mail	
Название детали		
Статья расходов		
Чертеж №		
Инструмент		
	Ранее использованный инструмент:	
Бесстружечный метчик	Изготовитель Режущий материал	
Размер резьбы	Размер Покрытие	
Допуск резьбы	Допуск Охлаждение	
DIN	Артикул № Скорость резания	
(для специальной резьбы просим указать размеры на эскизе)		
Заготовка		
Вид отверстия сквозное Длина резьбы мм Эскиз:	Вид отверстия глухое Глубина отверстия x D Длина резьбы мм Эскиз:	_
Обрабатываемый материал	Для специальной резьбы указать:	
или номер материала по DIN		
Характеристики мат.		
стружкой	Шаг	
Исполнение отверстия под резьбу	Средний Ш	
□ просверленное □ штампованное □ пролитое	Угол профиля	
Положение оси обрабатываемого отверстия	Внутренний Ш	
🔲 горизонтальное 🔲 вертикальное 🔲 наклонное	Чертеж находится	
Оборудование		
Производитель и тип	Подача:	
Мощность привода	🔲 ручная 🔲 гидравлическая 🔲 синхронна	ιЯ
Частота вращения	(для ЧПУ / ходо (для чПУ / ходо (для чПХ) (для чПХ)	вого
число шпинделей С внутренним подводом СОЖ		
Положение шпинделя:	сож:	
поризонтальное Вертикальное	🗖 отсутствует 🔲 Воздух	
<u> </u>	■ Масло ■ Керосин	
Крепление инструмента:	□ Эмульсия % □ ММS	
□ Резьбонарезные патроны □ растяжение □ сжатие	24	
Резьбонарезной аппарат	Обозначение СОЖ	
Цанговый патрон (жесткий)	Объем СОЖ л/мин	
🔲 Цанговый патрон с компенсацией длины	Давление СОЖ (ат/бар)	
Крепление заготовки: 🔲 вращается 🔲 неподвижно		
Опросный лист: Дата, подпись		

передано в работу: СоБО № Дата, печать

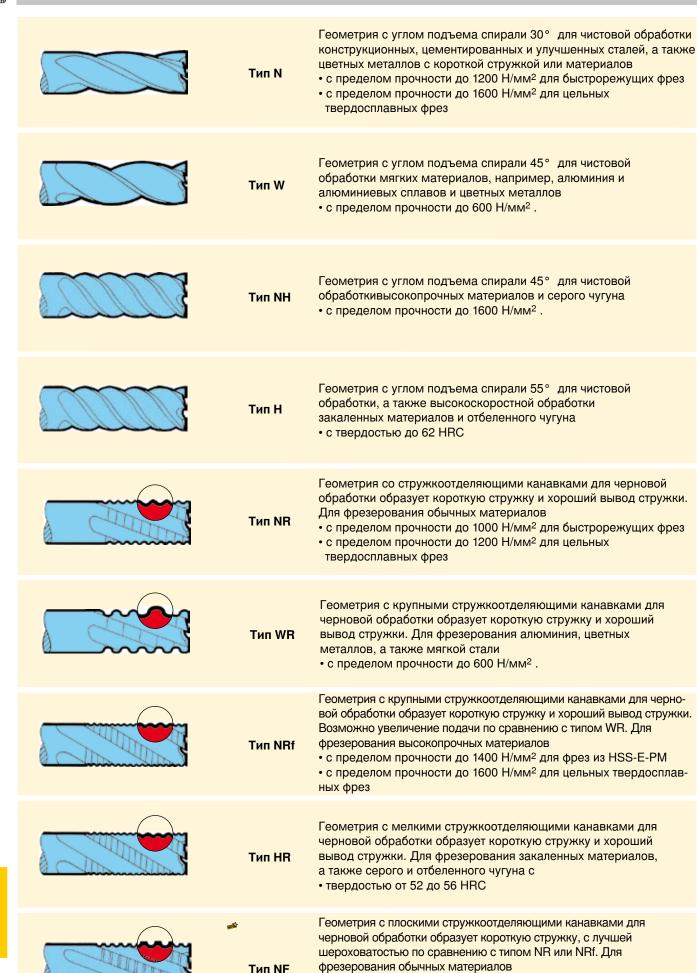
Дополнительно к стандартной программе возможно изготовление инструмента для других видов резьбы, со специальными размерами и допусками. Для выполнения Ваших специфических требований мы также разрабатываем комбинированный инструмент, например, с кромками для удаления заусенцев.

Основные геометрические параметры


 $lpha_{P}=3$ адний угол главн.реж.кромка $eta_{H}=$ Угол заострения главн.реж.кромка $\gamma_{P}=$ Передний угол главн.реж.кромка

 $_{\alpha}$ O = Задний угол $_{B$ спомогат,реж.кромка $_{\beta}$ N = Угол заострения $_{B}$ спомогат,реж.кромка $_{\gamma}$ O = Передний угол $_{B}$ спомогат,реж.кромка

= Угол подъема спирали


*) Вспомогательные режущие кромки - кромки, работающие не в направлении подачи.

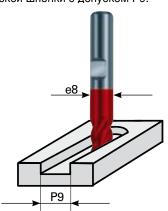
Угол перехода и угол столкновения β для инструмента с $d_1 < d_2$ и коническим переходом в зависимости от общей длины и длины реж.кромки.

Символ	Описание	метрич.	Формулы	
Vc	Скорость резания	м/мин	$V_{C} = \frac{\pi \cdot D_{C} \cdot n}{1000}$	
D _c	Диаметр фрезы	ММ		
n	Частота вращения (об/мин)		$n = \frac{v_c \cdot 1000}{\pi \cdot D_c}$	
S	Подача на оборот	ММ	$S = \frac{V_f}{n}$	
Vf	Минутная подача	ММ	$v_f = n \cdot z \cdot f_z$	
f _z	Подача на зуб	ММ	$f_z = \frac{V_f}{n \cdot z}$	
f	Подача на оборот	ММ	$f = f_z \cdot z$	
V _{fH}	Подача при обработке с интерполяцией	мм/мин	$V_{fH} = \frac{v_f \cdot \left(D_{h1} - D_{h2}\right)}{D_{h1}}.$ $D_{h1}(\text{мм}) = \text{наружный диаметр траектории интерполяции}$ $D_{h2}(\text{мм}) = LII, который описывает фрезу$	
z	Число зубьев			
Q	Объем стружки	см ³ /мин	$Q = \frac{a_p \cdot a_e \cdot v_f}{1000}$	
a _p	Глубина резания	ММ		
a _e	Ширина резания	ММ		
т	Время резания	мин.	$T = \frac{l_f}{v_f}$	
lf	Длина фрезер.	ММ		
D _(eff)	Длина фрезерования Эффективный диаметр при наклонном фрезеровании	ММ	$D_{(eff)} = 2 \cdot \sqrt{D \cdot a_p - a_p^2}$	
	β Deff	ММ	$D_{(eff)} = D \cdot sin \left[+ arc cos \left(\frac{D - 2a_p}{D} \right) \right]$	
R _{th}	Шероховатость	ММ	$R_{th} = \frac{D}{2} = \sqrt{\frac{D^2 - a_e^2}{4}}$	
Z _b	Оптимальный шаг фрезерования для тороидальных фрез	ММ	$Z_b = \frac{D - 2 \times R}{2}$	

Тип NF

• с пределом прочности до 1200 Н/мм² для быстрорежущих фрез

• с пределом прочности до 1600 Н/мм² для цельных

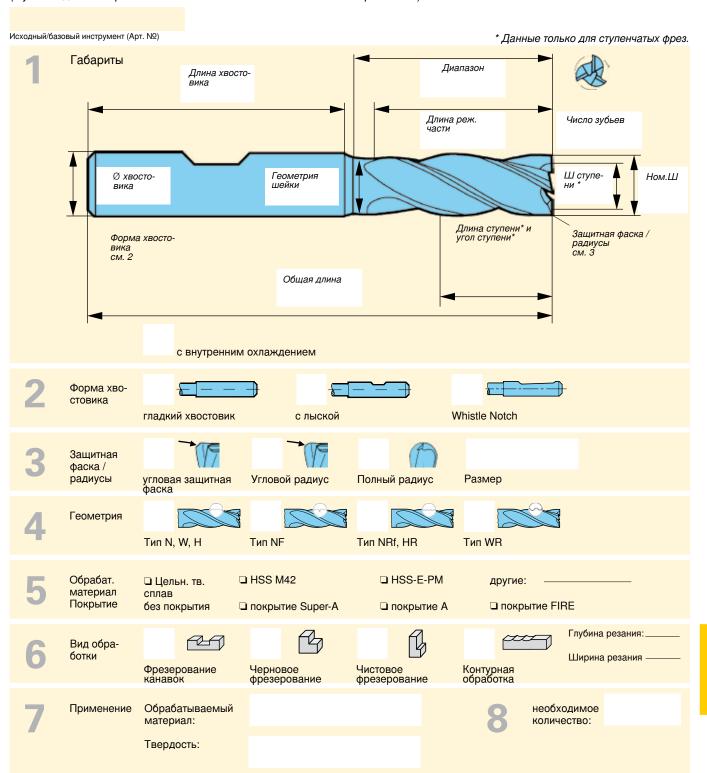

твердосплавных фрез

Des			
Rm (Н/мм2)	HRC	HB30	HV10
240		71	75
255		76	80
270		81	85
285		86	90
305		90	95
320		95	100
335		100	105
350		105	110
370		109	115
385		114	120
400		119	125
415		124	130
430		128	135
450		133	140
465		138	145
480		143	150
495		147	155
510		152	160
530		157	165
545		162	170
560		166	175
575		171	180
595		176	185
610		181	190
625		185	195
640		190	200
660		195	205
675		199	210
690		204	215
705		209	220
720		214	225
740		219	230
755		223	235
770		228	240
785		233	245
800	22	238	250
820	23	242	255
835	24	247	260
860	25	255	268
870	26	258	272
900	27	266	280
920	28	273	287
940	29	278	293
970	30	287	302
995	31	295	310
1020	32	301	317
1050	33	311	327
1080	34	319	336
1110	35	328	345
1140	36	337	355
1170	37	346	364

Rm (Н/мм2)	HRC	HB30	HV10
1200	38	354	373
1230	39	363	382
1260	40	372	392
1300	41	383	403
1330	42	393	413
1360	43	402	423
1400	44	413	434
1440	45	424	446
1480	46	435	458
1530	47	449	473
1570	48	460	484
1620	49	472	497
1680	50	488	514
1730	51	501	527
1790	52	517	544
1845	53	532	560
1910	54	549	578
1980	55	567	596
2050	56	584	615
2140	57	607	639
2180	58	622	655
	59		675
	60		698
	61		720
	62		745
	63		773
	64		800
	65		829
	66		864
	67		900
	68		940

					Пиапазон	номинальні	LIV DASMADOE	D D MM / 2H2L		OB B MKM		
			от 1	более 3	более 6	более 10	более 18	более 30	более 50	более 80	более 120	более 180
			до 3	до 6	до 10	до 18	до 30	до 50	до 80	до 120	до 180	до 250
		d 9	-20	-30	-40	-50	-65	-80	-100	-120	-145	-170
			-45	-60	-76	-93	-117	-142	-174	-207	-245	-285
		d 11	-20	-30	-40	-50	-65	-80	-100	-120	-145	-170
			-80	-105	-130	-160	-195	-240	-290	-340	-395	-460
		e8*	-14	-20	-25	-32	-40	-50	-60	-72	-85	-100
			-28	-38	-47	-59	-73	-89	-106	-126	-148	-172
		f8	-6	-10	-13	-16	-20	-25	-30	-36	-43	-50
		-20 -28 -35	-43	-53	-64	-76	-96	-106	-122			
		f9	-6	-10	-13	-16	-20	-25	-30	-36	-43	-50
			-31	-40	-49	-59	-72	-87	-104	-123	-143	-165
		h6	0	0	0	0	0	0	0	0	0	0
			-6	-8	-9	-11	-13	-16	-19	-22	-25	-29
		h7	0	0	0	0	0	0	0	0	0	0
			-10	-12	-15	-18	-21	-25	-30	-35	-40	-46
X		h8	0	0	0	0	0	0	0	0	0	0
Пус			-14	-18	-22	-27	-33	-39	-46	-54	-63	-72
и дс	эры	h9	0	0	0	0	0	0	0	0	0	0
чие	исть. положение и до Наружные размеры		-25	-30	-36	-43	-52	-62	-74	-87	-100	-115
Же	е ра	h10	0	0	0	0	0	0	0	0	0	0
Точность: положение и допуск	KHЫ		-40	-48	-58	-70	-84	-100	-120	-140	-160	-185
Г.Б.	тру	h11	0	0	0	0	0	0	0	0	0	0
НОС	He		-60	-75	-90	-110	-130	-160	-190	-220	-250	-290
Tot		h12	0	0	0	0	0	0	0	0	0	0
ľ			-100	-120	-150	-180	-210	-250	-300	-350	-400	-460
		js11	+30	+37,5	+45	+55	+65	+80	+95	+110	+125	+145
			-30	-37,5	-45	-55	-65	-80	-95	-110	-125	-145
		js14	+125	+150	+180	+215	+260	+310	+370	+435	+500	+575
			-125	-150	-180	-215	-260	-310	-370	-435	-500	-575
		js16	+300	+375	+450	+550	+650	+800	+950	+1100	+1250	+1450
			-300	-375	-450	-550	-650	-800	-950	-1100	-1250	-1450
		k10	+40	+48	+58	+70	+84	+100	+120	+140	+160	+185
			0	0	0	0	0	0	0	0	0	0
		k11	+60	+75	+90	+110	+130	+160	+190	+220	+250	+290
			0	0	0	0	0	0	0	0	0	0
		k12	+100	+120	+150	+180	+210	+250	+300	+350	+400	+460
			0	0	0	0	0	0	0	0	0	0
		k16	+600	+750	+900	+1100	+1300	+1600	+1900	+2200	+2500	+2900
			0	0	0	0	0	0	0	0	0	0

^{*} Фрезы с допуском е8 фрезеруют за один проход канавку для призматической шпонки с допуском Р9.


Опросный лист для специальных фрез

Заказчик №	Новый заказчик	Номер для заказа			
Фирма		Контактное лицо			
Улица/Номер дома		Индекс/Город			
Телефон		Факс			
Дата		Подпись			

□ Запрос □ Заказ

(Нужные данные просим внести в соответ. поля или отметить крестиком)

Отчет о применении

Заказчик №	Новый заказчик	Номер для заказа	
Фирма		Контактное лицо	
Улица/Номер дома		Индекс/Город	Контактное лицо на фирме Gühring:
Телефон		Факс	
Дата		Подпись	

инструмент:	
Артикул	(Nº)
Производитель	(обозначение)
Диаметр режущей	части(мм)
Длина режущей ча	сти(мм)
Общая длина	(мм)
Ш хвостовика	(мм)
Число зубьев	(кол-во)
Покрытие	(вид)
Станок	(год / прозводитель)
Мощность привода	(кВ)
Макс. частота врац	цения
Диапазон подачи	(мм/мин)
Зажим инструмента	а(HSK/SK40/ и т.д.)
Охлаждение	(эмульсия/спрей и т.д.)
Давление СОЖ	(бар/psi)

Обрабат. материал:

Обозначение по DIN	۱	(1.2222 и т.д.)
Химический состав		(42CrMo4 и т.д.)
Твердость / предел	прочности	(H/мм²/HRC/и т.д.)
Ширина фрезер. a _e		(мм)
Глубина фрезер. а _р		(мм)
Длина фрезер. I _f		(мм)
Время обработки		(мин.)
Инструментальная	оснастка	. (гидропластовый/и т.д.)
Скорость резания		(м/мин)
Подача		(мм/мин.)
Подача на зуб		(мм/зуб)
Вид фрезерования	(попутн./встре	ч.) (вид)

Применение:

Примечания от руки / эскизы:

Фрезерование канавок

Черновое фрезерование Чистовое фрезерование

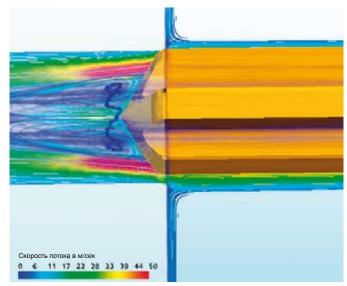
Контурная обработка

_	_
품	용
킁	၉

GÜHRING

СПЕЦИАЛЬНЫЕ РАЗВЕРТКИ

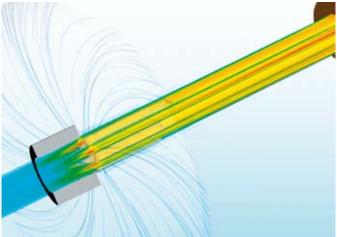
Специальные требования к обработке требуют специальных конструктивных решений. Мы предлагаем Вам, наряду с обширной стандартной программой инструмента, также:


- инструмент с поликристаллическим алмазом (PKD), в том числе для обработки глухих отверстий;
- инструмент с кубическим нитридом бора (СВN), например, для обработки седла клапана;
- инструмент из собственных твердых сплавов со специально разработанной геометрией, например, для обработки направляющей втулки клапана.

С двумя новыми твердосплавными развертками HR 500 D для сквозных отверстий и HR 500 S для глухих отверстий, фирма Gühring предлагает определяющие направления решения задач для финишной обработки отверстий, которые обеспечивают сокращение основного машинного времени до 50 раз при одновременном повышении стойкости инструмента и качества отверстия по сравнению с работой обычным инструментом.

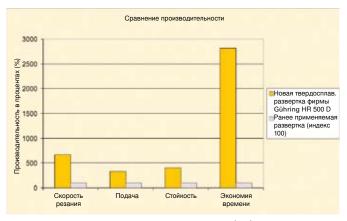
Быстрее, точнее, долговечнее:

новая твердосплавная развертка Gühring HR 500 D


Специально разработанная геометрия с прямыми канавками является уникальной для обработки сквозных отверстий. Она обеспечивает очень высокие режимы резания и для глубоких отверстий. Также геометрия с прямыми канавками в комбинации с превосходным подводом СОЖ обеспечивает отличный вывод стружки перед режущей кромкой. Вследствие этого, оптимально сохраняется обработанная поверхность, т.к. стружка не попадает в зону резания.

Обеспечивает оптимальную подачу СОЖ к режущей кромке: анализ CFD (Computational Fluid Dynamics / расчетная гидродинамика) скорости потока СОЖ на новой твердосплавной развертке Gühring HR 500 D

Оптимальный подвод СОЖ обеспечивают шлифованные продольные наружные канавки на хвостовике НА, которые по своему положению точно соответствуют положению канавок на режущей части развертки. Этот вариант наружного охлаждения имеет сразу несколько преимуществ относительно внутреннего охлаждения через радиальные каналы: мощная режущая часть значительно прочнее и отсутствует ограничение протекания СОЖ вследствие эрозии или замусоривания каналов под СОЖ. Кроме того, стружка не может зацепится в выходных отверстиях для СОЖ и их засорить. Таким образом оптимальный вывод стружки сохраняется без ограничений и для переточенного инструмента. Пользователь может не опасаться негативного воздействия при креплении развертки в гидропластовом или термопатроне. Остающейся цилиндрической поверхности вполне достаточно для обеспечения надежного зажима.

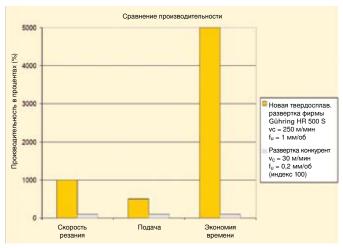


Без потерь по лезвию:

Несмотря на высокую частоту вращения и связанную с ней экстремальную центробежную силу, СОЖ протекает почти без потерь по шейке инструмента до режущей кромки в отверстии. Только при попадании на заготовку происходят минимальные боковые потери.

Результаты основополагающих исследований подтверждены многочисленными испытаниями в лаборатории резания фирмы Gühring и прежде всего практическим применением. Так, новая твердосплавная развертка HR 500 достигает сенсационных результатов при развертывании сквозного отверстия глубиной 65 мм с диаметром 4,485 мм - т.е. при глубине развертывания более 14 х D - в клапанном блоке из стали (9S20K). Основное машинное время обработки сократилось с 31 секунды на невероятные 1,1 секунды на одно отверстие! В отдельности, параметры улучшились следующим образом: скорость резания увеличилась с 18 м/мин до 120 м/мин, подача с 0,12 мм/об. до 0,4 мм/об. и стойкость с 15 м до 60 м по сравнению с ранее использованным инструментом. Отклонение от круглости также имеет поразительные показатели менее 4 мкм.

Значительное увеличение производительности при обработке сквозных отверстий:

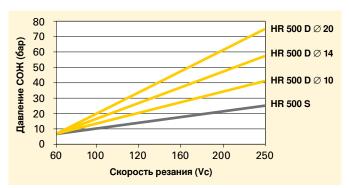

По сравнению с ранее использованной разверткой (на диаграмме с индексом 100), твердосплавная развертка Gühring HR 500 D для обработки сквозных отверстий достигает значительно более высоких показателей и экономию времени в 28 раз!

Великолепная производительность: HR 500 S достигает скорости резания от 250 м/мин и подачи более 10 м/мин при обработке стали

По сравнению с твердосплавной разверткой НR 500 D развертка HR 500 S имеет внутренний подвод СОЖ с одним центральным каналом. Его особо крупное поперечное сечение обеспечивает оптимальный подвод СОЖ к режущей кромке инструмента. Геометрия инструмента с прямыми канавками в сочетании с превосходным подводом СОЖ обеспечивают надежный отвод оптимально сформированной стружки.

Высокую эффективность твердосплавной развертки HR 500 S для обработки глухих отверстий подтверждают многочисленные примеры обработки, среди прочего, развертывание отверстия диаметром 8 мм и глубиной 30 мм в легированной улучшенной стали (42CrMo4). При обработке глухих отверстий с охлаждением эмульсией с давлением 40 бар, основное машинное время на одно отверстие сократилось в 50 раз! Так, скорость резания развертки HR 500 S составляла 250 м/мин, подача достигала 1 мм/об. Шероховатость после обработки от Rz = 1,5 до Rz = 3,5 при стойкости инструмента 45 м.

Невероятно, но это так:

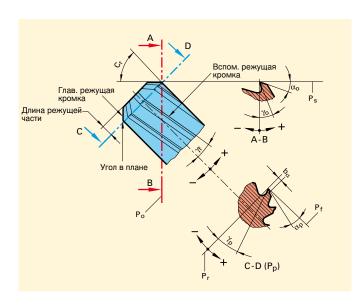

Производительность новой твердосплавной развертки Gühring HR 500 S по сравнению с инструментом конкурента, параметры которого показаны на диаграмме с индексом 100.

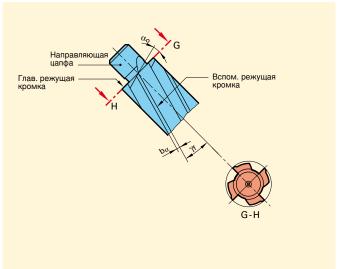
На уровне инструмента из кермета, но без его недостатков: новые твердосплавные развертки Gühring

Уровень производительности обеих новых твердосплавных разверток Gühring HR 500 D и HR 500 S достигался ранее только инструментом из кермета и имелось много недостатков. Развертки из кермета пригодны только для обработки некоторых материалов, в то время, как развертки из твердого сплава могут использоваться для всех, в т.ч., мягких и нержавеющих сталях. Обработка при прерывистом резании или при изменяющихся режимах станка, инструментом из кермета вообще невозможна, а с твердым сплавом, в большинстве случаев, это не проблема. Кроме того, развертки из кермета, как правило, относительно дорогие.

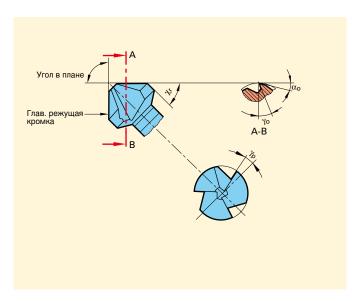
Пользователь получает выгоду от новых разверток Gühring HR 500 многократно:

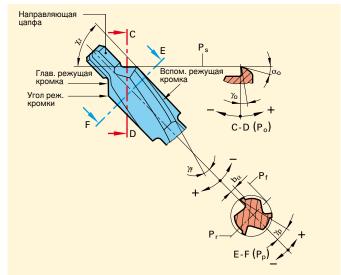
- очень высокие режимы резания,
- существенная экономия времени и затрат в производстве.
- широкий спектр применения,
- стандартная программа с соответствующими выгодными ценами, а также короткими сроками поставки,
- промежуточные размеры, которые могут быть изготовлены быстро и выгодно в любое время.




Давление СОЖ - скорость резания действует для стандартных габаритных размеров

Основные геометрические параметры


Развертки

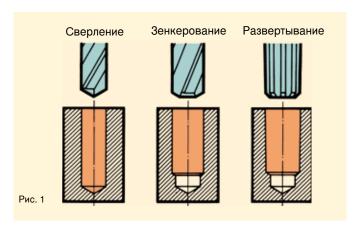

Цековки

Зенковки

Задний угол Задний угол вспомогательной режущей кромки Ширина ленточки в радиальной плоскости $\alpha_p = b = 0$

Передний угол γ_{o}

Угол подъема винтовой канавки


 γ_{f} Передний угол вспомогательной режущей кромки Угол в плане

Плоскость перепендикулярная

 $\chi_r = P_o = P_f = P_p = P_r = P_s = P_s$ режущей кромке Рабочая плоскость инструмента Задняя плоскость инструмента Базовая плоскость инструмента

Плоскость режущей кромки инструмента

Развертка - самый применяемый инструмент для обработки точных отверстий с хорошей шероховатостью поверхности. Последнее соответствует уровню качества "чистовой обработки" или "финишной обработки", примерно Ra = 0,2...6,5 мкм по DIN 4766, причем уже Ra = 0,5 мкм можно считать хорошей обработкой. Достигаемая точность обычно находится у IT 7. В особых случаях возможны также IT 6 или даже IT 5, если развертка затачивалась соответствующим образом, а также остальные условия работы соответствуют высоким требованиям.

При подготовке к развертыванию нужно предварительно просверлить и, как правило, зенкеровать отверстие. Предварительные отверстия, сделанные однолейзвийным сверлом глубокого сверления, плохо развертываются по причине уплотнения поверхности. Кроме того, отверстия, сделанные однолейзвийным инструментом, выполняются с окончательным допуском и необходимой шероховатостью поверхности, которые делают дополнительную финишную обработку излишней. Мы охотно предоставим Вам дополнительную информацию о наших однолезвийных сверлах.

Какая развертка для чего предназначена?

В зависимости от применения следует различать:

- ручные развертки
- машинные развертки

Ручные развертки

Ручные развертки, в полном смысле этого слова, работают в отверстии от руки при помощи воротка, надетого на квадрат хвостовика. Сила подачи также осуществляется вручную. Из-за малых параметров резания эти инструменты изготовлены из быстрорежущей стали (HSS). Чтобы получить хороший заход в отверстие, несмотря на ручную подачу, необходимо расположить заборную часть значительно дальше, как и у машинных разверток. Ручные развертки производятся как для цилиндрических, так и для конических отверстий.

Регулируемые ручные развертки согласно DIN 859 Вы можете устанавливать в пределах параметров упругости закаленной быстрорежущей стали. На практике это 1% от диаметра, например, 0,1 мм у развертки диаметром 10 мм. В рабочем полностью разведенном состоянии эти инструменты очень чувствительны к сколу, и поэтому их нужно беречь от ударов. Эти инструменты следует хранить только в ненагруженном состоянии.

Быстрорегулируемые развертки напротив можно устанавливать с большим диапазоном - до нескольких миллиметров! Регулировка точности должна осуществляться с помощью калибра-кольца.

Обратите внимание: ручные развертки вращать только по направ-ию резания, т.е. ни в коем случае не вращать в обратную сторону, как напр., при выходе нарезания резьбы. Режущие кромки сразу же затупятся при обратном вращении.

Рис. 2: Ручные конические развертки

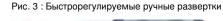


Рис. 4 : Регулируемые ручные развертки

Машинные развертки

Машинные развертки - как уже видно из названия, изготавливаются исключительно для применение на станках. Они различаются по типу режущего материала. Из-за высоких режимов резания данный инструмент сделан из улучшенной быстрорежущей стали (HSS-E), цельного твердого сплава или с твердосплавными пластинами (рис. 5). Выбор материала реж.части зависит от обрабатываемого материала.

Рис.5: Машинные развертки с твердосплавными режущими кромками

Твердосплавные развертки имеют следующие преимущества:

- более высокие скорости резания и подачи.
- экономичная обработка материалов с прочностью > 1200 H/мм².
- более высокую стойкость по сравнению с быстрорежущими развертками.

Специальные развертки

Развертки со специальными формами и допусками находят всё большее примение. Их изготовление требует научных разработок и высокотехнологичное оборудование. У компании Гюринг есть опыт и станки для того, обы экономически выгодно производить наисложнейшие инструменты. Проблемы при обработке, для которых Вы не можете найти решения, разъяснят наши сотрудники на месте, чтобы никакой вопрос не остался без рассмотрения и чтобы Вы для своей задачи по обработке получили Gühring действительно оптимальный инструмент.

Следующий отличительный признак как у ручных, так и у машинных разверток - геометрия режущей части. Общепринятыми и стандартными являются:

- развертки с прямыми зубьями
- спиральные развертки с левыми винтовыми канавками
- развертки с крутой спиралью 45° и левыми винтовыми канавками

Спиральные развертки с правыми винтовыми канавками используются только в особых случаях. Как и спиральные сверла они хорошо выводят стружку из отверстия, но качество поверхности не всегда бывает удовлетворительным.

Развертки с прямыми зубьями используйте для обработки глухих отверстий, когда стружка должна отводиться по канавкам развертки. Для всех других случаев обработки, также специально для прерывистых отверстий (напр. пазы, поперечные отверстия и т.п.) самым подходящим инструментом являются спиральные развертки с левыми винтовыми канавками. Т.к. они выводят стружку вперед, ими можно обрабаывать прежде всего сквозные отверстия. Для глухих отверстий они используются только в том случае, если отверстие обрабатывается не на всю глубину и достаточно места для стружки.

Рис. 6: Машинная зачистная развертка с крутой спиралью

Рис.7: Машинная торцовая развертка

Спиральная зачистная развертка с левой крутой спиралью 45° (рис. 6) используется в длинностружечных материалах. Для совершенно прямых, глубоких отверстий с точным позиционированием мы рекомендуем Вам наши торцевые развертки (рис. 7). Ее режущая кромка, как видно из названия, расположена на торце. Поэтому они не следуют предварительному отверстию, а корректируют его по оси. Торцевые развертки должны работать через кондукторную втулку.

Рис. 8: Машинная развертка с предварительной ступенью и твердосплавными реж. кромками

Оптимальную шероховатость и точность формы Вы получите, если разделите рабочий процесс на предварительное и окончательное развертывание. В т.ч. поэтому мы поставляем конические

развертки также как для предварительной, так и для окончательной обработки, как для ручного, так и для машинного применения. У машинных разверток с предварительной ступенью (рис.8) эти два рабочих процесса совмещаются. Конические развертки с большим износом и неточные по размеру могут быть снова пригодными для использования после переточки конуса и затыловочного шлифования по задней поверхности.

Хранение разверток

Развертки - инструмент для точной окончательной обработки, они очень чувствительны к удару. Поэтому они всегда должны храниться и транспортироваться по раздельно в наших пластмассовых футлярах. При таком отношении к инструменту результат его работы будет высоким, а срок эксплуатации - большим.

Назначение припуска под развертывание (рекомендованые значения в мм)

Обрабат. материал	Ø	Ø	Ø	Ø	Ø
	до 6 мм	до 10 мм	до 16 мм	до 25 мм	более 25 мм
Стали с пределом прочности до 700 H/мм2	0,1 - 0,2	0,2	0,2 - 0,3	0,3 - 0,4	0,4
Стали с пределом прочности 700 - 1000 H/мм2	0,1 - 0,2	0,2	0,2	0,3	0,3 - 0,4
Стальное литье	0,1 - 0,2	0,2	0,2	0,2 - 0,3	0,3 - 0,4
Серый чугун	0,1 - 0,2	0,2	0,2 - 0,3	0,3 - 0,4	0,3 - 0,4
Ковкий чугун	0,1 - 0,2	0,2	0,3	0,3 - 0,4	0,4
Медь	0,1 - 0,2	0,2 - 0,3	0,3 - 0,4	0,4	0,4 - 0,5
Латунь, бронза	0,1 - 0,2	0,2	0,2 - 0,3	0,3	0,3 - 0,4
Легкие сплавы	0,1 - 0,2	0,2 - 0,3	0,3 - 0,4	0,4	0,4 - 0,5
Пластмассы, твердые	0,1 - 0,2	0,2	0,4	0,4 - 0,5	0,5
Пластмассы, мягкие	0,1 - 0,2	0,2	0,2	0,3	0,3 - 0,4

При использовании регулируемых разверток припуск на развертывание должен быть уменьшен на 30%. Для зачистных разверток с крутой спиралью, напротив, приведенные значения могут быть увеличены на 50 - 100%, это зависит от особого принципа работы спирали.

Основные принципы для определения допусков на изготовление разверток

Указанные в стандарте DIN 1420 допуски на изготовление упорядочены по определенным полям допусков отверстий для развертывания. В общем случае, они обеспечивают то, что развертываемое отверстие находится в пределах соответствующего поля допуска и что при этом развертка используется экономично.

Следует учесть, что размер развертываемого отверстия, помимо допуска на изготовление развертки, зависит еще от других факторов, например от углов на режущей кромке, от заборной части развертки, от крепления детали, от зажима инструмента, от состояния станка, от СОЖ, от обрабатываемого материала. Вследствие этого могут возникнуть особые случаи, для которых более выгодны другие допуски на изготовление инструмента.

С учетом экономики производства и хранения на складе другие допуски на изготовления инструмента следует запрашивать только в действительно обоснованных случаях.

Для вычисления допусков на изготовление разверток установлены следующие, подтвержденные практикой, основные правила:

Вычисление предельных исполнительных размеров развертки

Верхний предел диаметра развертки d1 макс. находится на расстоянии 15% допуска на отверстие (0,15 IT) от максимального размера отверстия (рис.9). При этом значение 0,15 IT округляется до большего целого числа в мкм, так что d1макс. получается в целых значениях в мкм.

Допустимый наименьший диаметр $d_{1 \text{ мин.}}$ развертки находится в 35% допуска соответствующего отверстия (0,35 IT) при допустимом макс. диаметре развертки $d_{1 \text{MaKC.}}^*$.

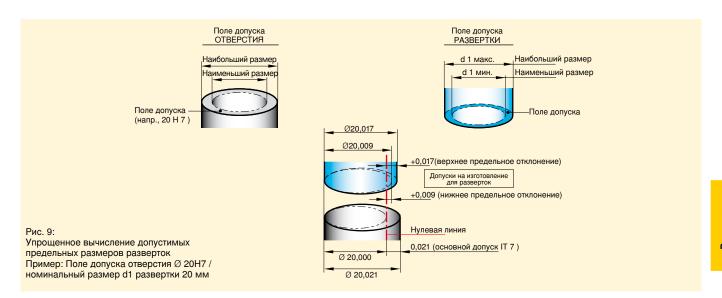
Пример 1 : для развертки 20 Н 7

Номинальный диаметр d 1 = 20,000 мм Макс. диаметр отверстия = 20,021 мм Поле допуска отверстия (IT 7) = 0,021 мм = 0,0031 мм = 0,004 мм Максим. диаметр развертки: = 0,0031 мм = 0,004 мм Допуск на изготовление развертки:

35 % от допуска отверстия (0,35 IT 7) = 0,0073 мм $\approx 0,008$ мм

Миним. диаметр развертки: $d_{1 \text{ мин}} = d_{1 \text{ макс}} - 0,35 \text{ IT } 7$

= 20,017 - 0,008 = 20,009 MM


Упрощенное вычисление допустимых предельных размеров разверток

Чтобы облегчить рассчет, для самых применяемых полей допусков указаны верхние и нижние предельные отклонения на изготовление номинального диаметра d развертки. Они приведены в таблицах на следующих страницах.

С помощью этих допусков можно рассчитать допустимые предельные размеры разверток следующим образом:

Пример 2: для развертки 20 Н 7

Номинальный диаметр d 1 = 20,000 мм верхнее отклонение (см. табл.) + 17 мкм = 0,017 мм нижнее отклонение (см. табл.) + 9 мкм = 0,009 мм следовательно d1 макс. = 20,000 + 0,017 = 20,017 мм d мин. = 20,000 + 0,009 = 20,009 мм

^{*)} относительно номин.диаметра d1 развертки. Верх. и нижн. предел.отклонения см. таблицу на след. страницах.

Обозначение

При обозначении разверток за номинальным диаметром указывается поле допуска обработываемого отверстия. Таким образом, обозначение развертки с номинальным диаметром d1 = 20 мм и допуском отверстия H7 следующее:

Развертка 20 H 7 DIN ...

("...": здесь ставится номер DIN соответствующей развертки)

Если в особых случаях заказываются развертки с предельными размерами, имеющими отклонения от этой нормы, то

в обозначении на месте поля допуска отверстия указываются верхнее и нижнее предельные отклонения развертки в мкм, например, для развертки с номинальным диаметром $d_1 = 20$ мм, верх. допуск = + (p) 25 мкм и нижн. допуск = + (p) 15 мкм:

Развертка 20 р 25 р 15 DIN ...

В обозначении на месте знака "плюс" буква "р" и на месте знака "минус" - буква "т" , т.к. знаки »+« и » — « можно использовать не на всех станках, в особенности на станках с ЧПУ.

(поля допусков А...G) DIN 1420

диа	альный метр мм	Предельные верхние и нижние отклонения номинального диаметра d ₁ развертки в мкм для поля допуска отверстия												
CB.	ДО	A9	A11	B8	B9	B10	B11	C8	C9	C10	C11			
1	3	+ 291 + 282	+ 321 + 300	+ 151 + 146	+ 161 + 152	+ 174 + 160	+ 191 + 170	+ 71 + 66	+ 81 + 72	+ 94 + 80	+ 111 + 90			
3	6	+ 295 + 284	+ 333 + 306	+ 155 + 148	+ 165 + 154	+ 180 + 163	+ 203 + 176	+ 85 + 78	+ 95 + 84	+ 110 + 93	+ 133 + 106			
6	10	+ 310 + 297	+ 356 + 324	+ 168 + 160	+ 180 + 167	+ 199 + 178	+ 226 + 194	+ 98 + 90	+ 110 + 97	+ 129 + 108	+ 156 + 124			
10	18	+ 326 + 310	+ 383 + 344	+ 172 + 162	+ 186 + 170	+ 209 + 184	+ 243 + 204	+ 117 + 107	+ 131 + 115	+ 154 + 129	+ 188 + 149			
18	30	+ 344 + 325	+ 410 + 364	+ 188 + 176	+ 204 + 185	+ 231 + 201	+ 270 + 224	+ 138 + 126	+ 154 + 135	+ 181 + 151	+ 220 + 174			
30	40	+ 362 + 340	+ 446 + 390	+ 203 + 189	+ 222 + 200	+ 255 + 220	+ 306 + 250	+ 153 + 139	+ 172 + 150	+ 205 + 170	+ 256 + 200			
40	50	+ 372 + 350	+ 456 + 400	+ 213 + 199	+ 232 + 210	+ 265 + 230	+ 316 + 260	+ 163 + 149	+ 182 + 160	+ 215 + 180	+ 266 + 210			
50	65	+ 402 + 376	+ 501 + 434	+ 229 + 212	+ 252 + 226	+ 292 + 250	+ 351 + 284	+ 179 + 162	+ 202 + 176	+ 242 + 200	+ 301 + 234			
65	80	+ 422 + 396	+ 521 + 454	+ 239 + 222	+ 262 + 236	+ 302 + 260	+ 361 + 294	+ 189 + 172	+ 212 + 186	+ 252 + 210	+ 311 + 244			
80	100	+ 453 + 422	+ 567 + 490	+ 265 + 246	+ 293 + 262	+ 339 + 290	+ 407 + 330	+ 215 + 196	+ 243 + 212	+ 289 + 240	+ 357 + 280			
100	120	+ 483 + 452	+ 597 + 520	+ 285 + 266	+ 313 + 282	+ 359 + 310	+ 427 + 350	+ 225 + 206	+ 253 + 222	+ 299 + 250	+ 367 + 290			
120	140	+ 545 + 510	+ 672 + 584	+ 313 + 290	+ 345 + 310	+ 396 + 340	+ 472 + 384	+ 253 + 230	+ 285 + 250	+ 336 + 280	+ 412 + 324			
140	160	+ 605 + 570	+ 732 + 644	+ 333 + 310	+ 365 + 330	+ 416 + 360	+ 492 + 404	+ 263 + 240	+ 295 + 260	+ 346 + 290	+ 422 + 334			
160	180	+ 665 + 630	+ 792 + 704	+ 363 + 340	+ 395 + 360	+ 446 + 390	+ 522 + 434	+ 283 + 260	+ 315 + 280	+ 366 + 310	+ 442 + 354			

диаг	альный метр мм		Предельные верхние и нижние отклонения номинального диаметра d ₁ развертки в мкм для поля допуска отверстия												
CB.	ДО	D8	D9	D10	D11	E7	E8	E9	F6	F7	F8	F9	G6	G7	
1	3	+ 31 + 26	+ 41 + 32	+ 54 + 40	+ 71 + 50	+ 22 + 18	+ 25 + 20	+ 35 + 26	+ 11 + 8	+ 14 + 10	+ 17 + 12	+ 27 + 18	+ 7 + 4	+ 10 + 6	
3	6	+ 45 + 38	+ 55 + 44	+ 70 + 53	+ 93 + 66	+ 30 + 25	+ 35 + 28	+ 45 + 34	+ 16 + 13	+ 20 + 15	+ 25 + 18	+ 35 + 24	+ 10 + 7	+ 14 + 9	
6	10	+ 58 + 50	+ 70 + 57	+ 89 + 68	+ 116 + 84	+ 37 + 31	+ 43 + 35	+ 55 + 42	+ 20 + 16	+ 25 + 19	+ 31 + 23	+ 43 + 30	+ 12 + 8	+ 17 + 11	
10	18	+ 72 + 62	+ 86 + 70	+ 109 + 84	+ 143 + 104	+ 47 + 40	+ 54 + 44	+ 68 + 52	+ 25 + 21	+ 31 + 24	+ 38 + 28	+ 52 + 36	+ 15 + 11	+ 21 + 14	
18	30	+ 93 + 81	+109 + 90	+ 136 + 106	+ 175 + 129	+ 57 + 49	+ 68 + 56	+ 84 + 65	+ 31 + 26	+ 37 + 29	+ 48 + 36	+ 64 + 45	+ 18 + 13	+ 24 + 16	
30	50	+ 113 + 99	+132 + 110	+ 165 + 130	+ 216 + 160	+ 71 + 62	+ 83 + 69	+ 102 + 80	+ 38 + 32	+ 46 + 37	+ 58 + 44	+ 77 + 55	+ 22 + 16	+ 30 + 21	
50	80	+ 139 + 122	+162 +136	+ 202 + 160	+ 261 + 194	+ 85 + 74	+ 99 + 82	+ 122 + 96	+ 46 + 39	+ 55 + 44	+ 69 + 52	+ 92 + 66	+ 26 + 19	+ 35 + 24	
80	120	+ 165 + 146	+193 +162	+ 239 + 190	+ 307 + 230	+ 101 + 88	+ 117 + 98	+ 145 + 114	+ 54 + 46	+ 65 + 52	+ 81 + 62	+ 109 + 78	+ 30 + 22	+ 41 + 28	
120	180	+ 198 + 175	+230 +195	+ 281 + 225	+ 357 + 269	+ 119 + 105	+ 138 + 115	+ 170 + 135	+ 64 + 55	+ 77 + 63	+ 96 + 73	+ 128 + 93	+ 35 + 26	+ 48 + 34	

(поля допусков H...P) DIN 1420

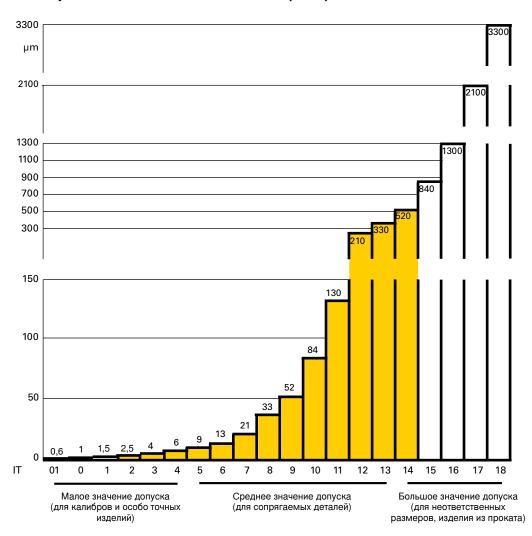
диаг	альный метр мм	Предельные верхние и нижние отклонения номинального диаметра d ₁ развертки в для поля допуска отверстия									ртки в м	икм			
св.	до	H6	H7	H8	H9	H10	H11	H12	J6	J7	J8	JS6	JS7	JS8	JS9
1	3	+ 5 + 2	+ 8 + 4	+11 + 6	+21 +12	+ 34 + 20	+ 51 + 30	+ 85 + 50	+ 1 - 2	+ 2 - 2	+ 3 - 2	+ 2 - 1	+ 3 - 1	+ 4 - 1	+ 8 - 1
3	6	+ 6 + 3	+10 + 5	+15 + 8	+25 +14	+ 40 + 23	+ 63 + 36	+102 + 60	+ 3 0	+ 4 - 1	+ 7 0	+ 2 - 1	+ 4 - 1	+ 6 - 1	+10 - 1
6	10	+ 7 + 3	+12 + 6	+18 +10	+30 +17	+ 49 + 28	+ 76 + 44	+127 + 74	+ 3 - 1	+ 5 - 1	+ 8	+ 3 - 1	+ 5 - 1	+ 7 - 1	+12 - 1
10	18	+ 9 + 5	+15 + 8	+22 +12	+36 +20	+ 59 + 34	+ 93 + 54	+153 + 90	+ 4	+ 7 0	+10 0	+ 3 - 1	+ 6 - 1	+ 8 - 1	+15 - 1
18	30	+11 + 6	+17 + 9	+28 +16	+44 +25	+ 71 + 41	+110 + 64	+178 +104	+ 6 + 1	+ 8	+15 + 3	+ 4 - 1	+ 7 - 1	+11 - 1	+18 - 1
30	50	+13 + 7	+21 +12	+33 +19	+52 +30	+ 85 + 50	+136 + 80	+212 +124	+ 7 + 1	+10 + 1	+18 + 4	+ 5 - 1	+ 8 - 1	+13 - 1	+21 - 1
50	80	+16 + 9	+25 +14	+39 +22	+62 +36	+102 + 60	+161 + 94	+255 +150	+10 + 3	+13 + 2	+21 + 4	+ 6 - 1	+10 - 1	+16 - 1	+25 - 1
80	120	+18 +10	+29 +16	+45 +26	+73 +42	+119 + 70	+187 +110	+297 +174	+12 + 4	+16 + 3	+25 + 6	+ 7 - 1	+12 - 1	+18 - 1	+30 - 1
120	180	+21 +12	+34 +20	+53 +30	+85 +50	+136 + 80	+212 +124	+340 +200	+14 + 5	+20 + 6	+31 + 8	+ 8 - 1	+14 0	+22 - 1	+35 0

Наша стандартная точность изготовления

Номина диам в м	иетр		Пре	дельные	верхни	е и нижн		онения н оля допус			аметра	d ₁ разве	ртки в м	IKM	
CB.	до	K6	K7	K8	M6	M7	M8	N6	N7	N8	N9	N10	N11	P6	P7
1	3	- 1 - 4	- 2 - 6	- 3 - 8	- 3 - 6	- 4 - 8		- 5 - 8	- 6 -10	- 7 -12	- 8 -17	-10 -24	- 13 - 34	- 7 -10	- 8 -12
3	6	0 - 3	+ 1 - 4	+ 2 - 5	- 3 - 6	- 2 - 7	– 1 – 8	- 7 -10	- 6 -11	- 5 -12	- 5 -16	- 8 -25	- 12 - 39	–11 –14	–10 –15
6	10	0 - 4	+ 2 - 4	+ 2 - 6	- 5 - 9	- 3 - 9	- 3 -11	- 9 -13	- 7 -13	- 7 -15	- 6 -19	- 9 -30	- 14 - 46	–14 –18	–12 –18
10	18	0 - 4	+ 3 - 4	+ 3 - 7	- 6 -10	- 3 -10	- 3 -13	–11 –15	- 8 -15	- 8 -18	- 7 -23	-11 -36	- 17 - 56	–17 –21	–14 –21
18	30	0 - 5	+ 2 - 6	+ 5 - 7	- 6 -11	- 4 -12	- 1 -13	–13 –18	–11 –19	- 8 -20	- 8 -27	-13 -43	- 20 - 66	-20 -25	-1 -26
30	50	0 - 6	+ 3 - 6	+ 6 - 8	- 7 -13	- 4 -13	- 1 -15	–15 –21	–12 –21	- 9 -23	-10 -32	–15 –50	- 24 - 80	-24 -30	-21 -30
50	80	+ 1 - 6	+ 4 - 7	+ 7 -10	- 8 -15	- 5 -16	- 2 -19	–17 –24	–14 –25	–11 –28	–12 –38	–18 –60	- 29 - 96	-29 -36	-26 -37
80	120	0 - 8	+ 4 - 9	+ 7 -12	–10 –18	- 6 -19	- 3 -22	-20 -28	–16 –29	–13 –32	–14 –45	–21 –70	- 33 -110	-34 -42	-30 -43
120	180	0 - 9	+ 6 - 8	+10 -13	–12 –21	- 6 -20	- 2 -25	-24 -33	–18 –32	–14 –37	–15 –50	-24 -80	- 38 -126	-40 -49	-43 -48

(поля допусков R...Z) DIN 1420

диа	нальный метр мм		Предел	ьные вер	хние и них		онения но оля допус			етра d ₁ ра	азвертки	в мкм	
св. 1	до 3	R6 - 11 - 14	R7 - 12 - 16	S6 - 15 - 18	S7 - 16 - 20	Т6	U6 - 19 - 22	U7 - 20 - 24	U10	X10	X11	Z10 - 32 - 46	Z11
3	6	- 14 - 17	- 13 - 18	- 18 - 21	- 17 - 22		- 22 - 25	- 21 - 26	- 31 - 48			- 43 - 60	
6	10	- 18 - 22	- 16 - 22	- 22 - 26	- 20 - 26		- 27 - 31	- 25 - 31	- 37 - 58			- 51 - 72	
10	14	- 22 - 26	- 19 - 26	- 27 - 31	- 24 - 31		- 32 - 36	- 29 - 36	- 44 - 69			- 61 - 86	
14	18	- 22 - 26	- 19 - 26	- 27 - 31	- 24 - 31		- 32 - 36	- 29 - 36	- 44 - 69	- 56 - 81		- 71 - 96	
18	24	- 26 - 31	- 24 - 32	- 33 - 38	- 31 - 39		- 39 - 44	- 37 - 45		- 67 - 97		- 86 -116	
24	30	- 26 - 31	- 24 - 32	- 33 - 38	- 31 - 39	- 39 - 44	- 46 - 51	- 44 - 52		- 77 -107		-101 -131	–108 –154
30	40	- 32 - 38	- 29 - 38	- 41 - 47	- 38 - 47	- 46 - 52	- 58 - 64	- 55 - 64		- 95 -130		-127 -162	-136 -192
40	50	- 32 - 38	- 29 - 38	- 41 - 47	- 38 - 47	- 52 - 58	- 68 - 74	- 65 - 74	- 85 -120	-112 -147		–151 –186	-160 -216
50	65	- 38 - 45	- 35 - 46	- 50 - 57	- 47 - 58	- 63 - 70	- 84 - 91	- 81 - 92	-105 -147	-140 -182	–151 –218	-190 -232	-201 -268
65	80	- 40 - 47	- 37 - 48	- 56 - 63	- 53 - 64	- 72 - 79	- 99 -106	- 96 -107	–120 –162	–164 –206	–175 –242	-228 -270	-239 -306
80	100	- 48 - 56	- 44 - 57	- 68 - 76	- 64 - 77	- 88 - 96	–121 –129	–117 –130	–145 –194	–199 –248	-211 -288	-279 -328	-291 -368
100	120	- 51 - 59	- 47 - 60	- 76 - 84	- 72 - 85	-101 -109	-141 -149	–137 –150	-165 -214	-231 -280	-243 -320	-331 -380	-343 -420
120	140	- 60 - 69	- 54 - 68	- 89 - 98	- 83 - 97	–119 –128	–167 –176	–161 –175	-194 -250	-272 -328	-286 -374	-389 -445	-403 -491
140	160	- 62 - 71	- 56 - 70	- 97 -106	- 91 -105	-131 -140	–187 –196	–181 –195	-214 -270	-304 -360	–318 –406	-439 -495	-453 -541
160	180	- 65 - 74	- 59 - 73	–105 –114	- 99 -113	–143 –152	–207 –216	–201 –215	-234 -290	-334 -390	-348 -436	-489 -545	-503 -591


диа	нальный аметр мм	Дополнительные допуски для машинных разверток
CB.	до	MM
0,95	5,50	0,000 / +0,004
5,50	12,05	0,00 / +0,005

и Зенковки

Значения основных допусков ISO для диапазона размеров от 1 - 120 мм DIN ISO - 286 - 1

Н	оминальный диаметр в мм						IТв	МКМ					
	св. до	3	4	5	6	7	8	9	10	11	12	13	14
ОТ ДО	1 3	2	3	4	6	10	14	25	40	60	100	140	250
СВ ДО	3 6	2.5	4	5	8	12	18	30	48	75	120	180	300
СВ. ДО	6 10	2.5	4	6	9	15	22	36	58	90	150	220	360
св. до	10 18	3	5	8	11	18	27	43	70	110	180	270	430
СВ. ДО	18 30	4	6	9	13	21	33	52	84	130	210	330	520
СВ ДО	30 50	4	7	11	16	25	39	62	100	160	250	390	620
СВ ДО	50 80	5	8	13	19	30	46	74	120	190	300	460	740
СВ ДО	80 120	6	10	15	22	35	54	87	140	220	350	540	870

Пример основного допуска ISO для диапазона номинальных размеров от 18 до 30 мм

	нальный	A	1		E	3			C	;	
	ер в мм в. до	9	11	8	9	10	11	8	9	10	11
0	3	+295	+330	+154	+165	+180	+200	+74	+85	+100	+120
U	3	+270	+270	+140	+140	+140	+140	+60	+60	+60	+60
3	6	+300	+345	+158	+170	+188	+215	+88	+100	+118	+145
	O	+270	+270	+140	+140	+140	+140	+70	+70	+70	+70
6	10	+316	+370	+172	+186	+208	+240	+102	+116	+138	+170
	10	+280	+280	+150	+150	+150	+150	+80	+80	+80	+80
10	18	+333	+400	+177	+193	+220	+260	+122	+138	+165	+205
10	10	+290	+290	+150	+150	+150	+150	+95	+95	+95	+95
18	30	+352	+430	+193	+212	+244	+290	+143	+162	+194	+240
10	30	+300	+300	+160	+160	+160	+160	+110	+110	+110	+110
30	40	+372	+470	+209	+232	+270	+330	+159	+182	+220	+280
30	40	+310	+310	+170	+170	+170	+170	+120	+120	+120	+120
40	50	+382	+480	+219	+242	+280	+340	+169	+192	+230	+290
10	30	+320	+320	+180	+180	+180	+180	+130	+130	+130	+130
50	65	+414	+530	+236	+264	+310	+380	+186	+214	+260	+330
30	03	+340	+340	+190	+190	+190	+190	+140	+140	+140	+140
65	80	+434	+550	+246	+274	+320	+390	+196	+224	+270	+340
05	00	+360	+360	+200	+200	+200	+200	+150	+150	+150	+150
80	100	+467	+600	+274	+307	+360	+440	+224	+257	+310	+390
00	100	+380	+380	+220	+220	+220	+220	+170	+170	+170	+170
100	120	+497	+630	+294	+327	+380	+460	+234	+267	+320	+400
100	120	+410	+410	+240	+240	+240	+240	+180	+180	+180	+180

	нальный			D				E				F	
	ер в мм в. до	8	9	10	11	12	7	8	9	6	7	8	9
0	3	+34	+45	+60	+80	+120	+24	+28	+39	+12	16	+20	+31
U	3	+20	+20	+20	+20	+20	+14	+14	+14	+6	+6	+6	+6
3	6	+48	+60	+78	+105	+150	+32	+38	+50	+18	+22	+28	+40
3	U	+30	+30	+30	+30	+30	+20	+20	+20	+10	+10	+10	+10
6	10	+62	+76	+98	+130	+190	+40	+47	+61	+22	+28	+35	+49
0	10	+40	+40	+40	+40	+40	+25	+25	+25	+13	+13	+13	+13
10	18	+77	+93	+120	+160	+230	+50	+59	+75	+27	+34	+43	+59
10	10	+50	+50	+50	+50	+50	+32	+32	+32	+16	+16	+16	+16
18	30	+98	+117	+149	+195	+275	+61	+73	+92	+33	+41	+53	+72
10	30	+65	+65	+65	+65	+65	+40	+40	+40	+20	+20	+20	+20
30	50	+119	+142	+180	+240		+75	+89	+112	+41	+50	+64	+87
30	50	+80	+80	+80	+80		+50	+50	+50	+25	+25	+25	+25
50	80	+146	+174	+220	+290		+90	+106	+134	+49	+60	+76	+104
50	00	+100	+100	+100	+100		+60	+60	+60	+30	+30	+30	+30
80	120	+174	+207	+260	+340		+107	+126	+159	+58	+71	+90	+123
80	120	+120	+120	+120	+120		+72	+72	+72	+36	+36	+36	+36
120	180							+148					
120	100							+85					
180	250							+172					
100	200							+100					

	нальный	(G				Н	1		1		J	
	ер в мм 3. до	6	7	6	7	8	9	10	11	12	6	7	8
0	3	+8	+12	+6	+10	+14	+25	+40	+60	+100	+2	+4	+6
	3	+2	+2	0	0	0	0	0	0	0	-4	-6	-8
3	6	+12	+16	+8	+12	+18	+30	+48	+75	+120	+5	+6	+10
3	U	+4	+4	0	0	0	0	0	0	0	-3	-6	-8
6	10	+14	+20	+9	+15	+22	+36	+58	+90	+150	+5	+8	+12
0	10	+5	+5	0	0	0	0	0	0	0	-4	-7	-10
10	18	+17	+24	+11	+18	+27	+43	+70	+110	+180	+6	+10	+15
10	10	+6	+6	0	0	0	0	0	0	0	-5	-8	-12
18	30	+20	+28	+13	+21	+33	+52	+84	+130	+210	+8	+12	+20
10	30	+7	+7	0	0	0	0	0	0	0	-5	-9	-13
30	50	+25	+34	+16	+25	+39	+62	+100	+160	+250	+10	+14	+24
30	50	+9	+9	0	0	0	0	0	0	0	-6	-11	-15
50	80	+29	+40	+19	+30	+46	+74	+120	+190	+300	+13	+18	+28
30	00	+10	+10	0	0	0	0	0	0	0	-6	-12	-18
80	120	+34	+47	+22	+35	+54	+87	+140	+220	+350	+16	+22	+34
80	120	+12	+12	0	0	0	0	0	0	0	-6	-13	-20
120	180		+54	+25	+40	+63	+100	+160	+250		+18	+26	+41
120	100		+14	0	0	0	0	0	0		-7	-14	-22
180	250		+61	+29	+46	+72	+115	+185	+290		+22	+30	+47
100	250		+15	0	0	0	0	0	0		-7	-16	-25

	нальный		J	s			K			М	
	ер в мм в. до	6	7	8	9	6	7	8	6	7	8
0	3	+3	+5	+7	+12,5	0	0	0	-2	-2	-4
U	3	-3	-5	-7	-12,5	-6	-10	-14	-8	-12	-18
3	6	+4	+6	+9	+15	+2	+3	+5	-1	0	+2
3	b	-4	-6	-9	-15	-6	-9	-13	-9	-12	-16
6	10	+4,5	+7,5	+11	+18	+2	+5	+6	-3	0	+1
0	10	-4,5	-7,5	-11	-18	-7	-10	-16	-12	-215	-21
10	18	+5,5	+9	+13,5	+21,5	+2	+6	+8	-4	0	+2
10	10	-5,5	-9	-13,5	-21,5	-9	-12	-19	-15	-18	-25
18	30	+6,5	+10,5	+16,5	+26	+2	+6	+10	-4	0	+4
10	30	-6,5	-10,5	-16,5	-26	-11	-15	-23	-17	-21	-29
30	50	+8	+12,5	+19,5	+31	+3	+7	+12	-4	0	+5
30	50	-8	-12,5	-19,5	-31	-13	-18	-27	-20	-25	-34
50	80	+9,5	+15	+23	+37	+4	+9	+14	-5	0	+5
30	00	-9,5	-15	-23	-37	-15	-21	-32	-24	-30	-41
80	120	+11	+17,5	+27	+43,5	+4	+10	+16	-6	0	+6
00	120	-11	-17,5	-27	-43,5	-18	-25	-38	-28	-35	-48
120	180					+4	+12				
120	100					-21	-28				
180	250					+5	+13				
100	230					-24	-33				

	нальный			ı	V				Р		F	₹
	ер в мм з. до	6	7	8	9	10	11	6	7	9	6	7
0	3	-4	-4	-4	-4	-4	-4	-6	-6	-6	-10	-10
	3	-10	-14	-8	-29	-44	-64	-12	-16	-31	-16	-20
3	6	-5	-4	-2	0	0	0	-9	-8	-12	-12	-11
3	U	-13	-16	-20	-30	-48	-75	-17	-20	-42	-20	-23
6	10	-7	-4	-3	0	0	0	-12	-9	-15	-16	-13
U	10	-16	-19	-25	-36	-58	-90	-21	-24	-51	-25	-28
10	18	-9	-5	-3	0	0	0	-15	-11	-18	-20	-16
10	10	-20	-23	-30	-43	-70	-110	-26	-29	-61	-31	-34
18	30	-11	-7	-3	0	0	0	-18	-14	-22	-24	-20
10	30	-24	-28	-36	-52	-84	-130	-31	-35	-74	-37	-41
30	50	-12	-8	-3	0	0	0	-21	-17	-26	-29	-25
30	30	-28	-33	-42	-62	-100	-160	-37	-42	-88	-45	-50
50	65	-14	-9	-4	0	0	0	-26	-21	-32	-35	-30
	00	-33	-39	-50	-74	-120	-190	-45	-51	-106	-54	-60
65	80	-14	-9	-4	0	0	0	-26	-21	-32	-37	-32
00	00	-33	-39	-50	-74	-120	-190	-45	-51	-106	-56	-62
80	100	-16	-10	-4	0	0	0	-30	-24	-37	-44	-38
- 00	100	-38	-45	-58	-87	-140	-220	-52	-59	-124	-66	-73
100	120	-16	-10	-4	0	0	0	-30	-24		-47	-41
	120	-38	-45	-58	-87	-140	-220	-52	-59		-69	-76

	нальный ер в мм	;	S	Т		U		2	x	:	Z
	ер в мім В. ДО	6	7	6	6	7	10	10	11	10	11
0	3	-14	-14	-18	-18	-18	-18	-20	-20	-26	-26
U	3	-20	-24	-24	-24	-28	-58	-60	-80	-66	-86
3	6	-16	-15	-20	-20	-19	-23	-28	-28	-35	-35
٦	O	-24	-27	-28	-28	-31	-71	-76	-103	-83	-110
6	10	-20	-17	-25	-25	-22	-28	-34	-34	-42	-42
0	10	-29	-32	-34	-34	-37	-86	-92	-124	-100	-132
10	14	-25	-21	-30	-30	-26	-33	-40	-40	-50	-50
10	14	-36	-39	-41	-41	-44	-103	-110	-150	-120	-160
14	18	-25	-21	-30	-30	-26	-33	-45	-45	-60	-60
14	10	-36	-39	-41	-41	-44	-103	-115	-155	-130	-170
18	24	-31	-27	-37	-37	-33	-41	-54	-54	-73	-73
10	24	-44	-48	-50	-50	-54	-125	-138	-184	-157	-203
24	30	-31	-27	-37	-44	-40	-48	-64	-64	-88	-88
24	30	-44	-48	-50	-57	-61	-132	-148	-194	-172	-218
30	40	-38	-34	-43	-55	-51	-60	-80	-80	-112	-112
30	40	-54	-59	-59	-71	-76	-160	-180	-240	-212	-272
40	50	-38	-34	-49	-65	-61	-70	-97	-97	-136	-136
40	30	-54	-59	-65	-81	-86	-170	-197	-257	-236	-296
50	65	-47	-42	-60	-81	-76	-87	-122	-122	-172	-172
00	00	-66	-72	-79	-100	-106	-207	-242	-312	-292	-362
65	80	-53	-48	-69	-96	-91	-102	-146	-146	-210	-210
	00	-72	-78	-88	-115	-121	-222	-266	-336	-330	-400
80	100	-64	-58	-84	-117	-111	-124	-178	-178	-258	-258
00	100	-86	-93	-106	-139	-146	-264	-318	-398	-398	-478
100	120	-72	-66	-97	-137	-131	-144	-210	-210	-310	-310
.50	120	-94	-101	-119	-159	-166	-284	-350	-430	-450	-530

Исполнение твердосплавных разверток

Мы используем наши твердые сплавы для изготовления следующих разверток:

- Развертки для станков с ЧПУ: цельный твердый сплав Машинные развертки:
 - ≤ Ø 9,5 мм из цельного твердого сплава
 - > Ø 9,5 мм с твердосплавными пластинами
- Машинные регулируемые развертки: с твердосплавными пластинами

Диапазон установки и регулировки раздвижных разверток

Наши раздвижные развертки в зависимости от диаметра могут поставляться со следующей точностью:

- ≥ Ø 12 мм около 0,015 мм
- $\geq \emptyset$ 17 мм около 0,020 мм
- ≥ Ø 24 мм около 0,025 мм
- $\geq \emptyset$ 32 мм около 0,030 мм

Внимание:

Раздвижные развертки только разводить! При возврате в исходное положение пропадает предварительное натяжение и появляется опасность разрушения!

Диапазон регулировки раздвижных разверток

Наши раздвижные развертки настраиваются благодаря торцевому винту с точностью приблизительно 0,03 мм.

Регулируемые ручные развертки Диапазон регулировки

Регулируемые ручные развертки выполнены с номинальным диаметром и не для отверстий с полем допуска H7. Диапазон регулировки составляет 1/100 от номинального диаметра, напр., для \varnothing 10,00 мм это около 0,1 мм. Начиная с \varnothing 6,50 мм происходит регулировка посредством контргайки.

Насадные развертки Посадочное отверстие

Наши машинные насадные развертки согласно DIN 219 имеют посадочное отверстие с конусностью 1:30 и поперечный шпоночный паз согласно DIN 138.

Специальные развертки с режущей кромкой из кермета

В нижеследующей таблице мы составили краткий обзор применения разверток из кермета, а также рекомендуемых режимов обработки в зависимости от обрабатываемого материала. При этом речь идет об ориентировочных значениях, которые могут изменяться.

			Подача при обработ і кромкой из керме	
Материалы, которые могут хорошо обрабатываться керметом	Скорость резания при развертывании керметом	Диаметр < 7 мм	Диаметр 7 - 16 мм	Диаметр > 16 мм
Конструкционная сталь, напр. St 33, St 50 - 2	100 - 180 м/мин			
Цементированная сталь, напр. С10, 16MnCr5	80 - 140 м/мин			
Автоматная сталь, напр. 11SMnPb30, 9SMn36	100 - 180 м/мин	0,3-0,4	0,6-0,8	0,8-1,4
Улучшенная сталь, напр. 42CrMo4, 28Cr4	80 - 140 м/мин			
Высокопрочный чугун, напр. GGG40 , GGG60	100 - 180 м/мин			

GISS 4000

Используйте преимущества термозажима для особо длинного инструмента и для специальных термопатронов. Фирма Gühring специально для этого предлагает установку для термозажима GISS 4000. Длинная стойка позволяет использовать инструмент общей длиной до 750 мм, кроме того, устройство может быть очень гибко адаптировано к Вашим специальным требованиям.

Бланк запроса Специальная развертка

№ клиента	Новый клиент	Номер запроса			Почтовый ящик 10 D-72423 Альбштад Телефон: (07431) 1 Факс: (07431) 17 - 3 Интернет: www.gu	цт 17-0 279
Фирма		Контактное лицо				
Улица/Номер дома		Индекс/Город			Vauraurus ruus	
77/mqui Tollicp gollid		индекол ород			Контактное лицо	
Телефон		Факс				
Дата		Подпись				
□ Запрос □	Заказ по ф желтые поля ил		іком)			
Заготовка (по возможнос	ги с эскизом	ı или техн. че				
Номинальн. диаметр отверстия:	[] O		Допуск на отвер.:		Припуск:	
Вид отверстия: Обраб. материал:	🔲 Сквозное Гл	лухое	Шерох. обраба	T TODOS /D /D	1.	
Исполнение инструмента		ная тв.спл. 🖵 С		нами 🖵 Бь		Скерметом
Тип хвостовика:	DIN6535 (h6)			Ø		ММ
	Цилиндричес			Ø		ММ
	🔲 Конус Морз	e:		Номер	K.M.	
11						
Необход. вылет инструмента: Тип развертки:		ашинная	мм Охлажд.: 🔲 Е	Внеш. 🔲 Внут	p. bar	☐ MMS
	I ☐ Ma			внеш. 🔲 Внут	p. bar	MMS
Тип развертки:	I ☐ Ma	ашинная			р. bar	
Тип развертки:	i Ma	ашинная	Охлажд.: 🔲 Е			
Тип развертки:	i Ma	ашинная	Охлажд.: 🔲 Е			
Тип развертки:	i Ma	ашинная	Охлажд.: 🔲 Е			
Тип развертки:	i Ma	ашинная	Охлажд.: 🔲 Е			
Тип развертки:	i Ma	ашинная	Охлажд.: 🔲 Е			
Тип развертки:	i Ma	ашинная	Охлажд.: 🔲 Е			
Тип развертки:	i Ma	ашинная	Охлажд.: 🔲 Е			
Тип развертки:	i Ma	ашинная	Охлажд.: 🔲 Е			
Тип развертки:	i Ma	ашинная	Охлажд.: 🔲 Е			
Тип развертки:	i Ma	ашинная	Охлажд.: 🔲 Е			
Тип развертки:	i Ma	ашинная	Охлажд.: 🔲 Е			
Тип развертки:	i Ma	ашинная	Охлажд.: 🔲 Е			
Тип развертки:	i Ma	ашинная	Охлажд.: 🔲 Е			
Тип развертки:	i Ma	ашинная	Охлажд.: 🔲 Е			

Опросный лист для с	пециа	альной	ко	нич	еск	ой р	раз	вер	ткν	I												
№ клиента Новый клиент				Номе	ер зап	poca								D. Te	·724 елес	рвый 123 <i>А</i> фон: : (074	льб (074	шта 31)	ідт 17-0)		
ирма				Конта	актноє	я лицо										онет:					de	
P - 2																						
ица/Номер дома				Инде	кс/Гор	оод								Ко	нтак	гное л	ицо					
лефон				Факс	:																	
ата				Подп	ІИСЬ																	
⊒ Запрос	□ 3	ваказ г	10	фа	ксу	/ :																
Нужные данные просим вне	ести в х	желтые по	оля и	или с	тмет	гить н	крес	тик	ом)													
олненный опросный лист,										a. H	аш	и сотр	удники	сра	азу	же	СВЯ	жут	ъся	св	амі	1.
аготовка (по возможно Соотношение конуса:	ЮСТИ	СЭСКИ	30 IV	ונוא וי	ич	epre	3MC	_	алый	a.				им	რი	льшо	nŭ Ø					N 4
Доотношение конуса. Длина конуса:				•			MM	+	-		отве	р. цили	ндрич.:			Ø ми		•				М
Предварит. отвер. конич./стуг	тенч.□	малый	Ø M	M								.	шой Ø									
Обраб. материал:		IVIQUIDIVI I	- 1411	••				Li	lono	v of	nań		ер. (R _z /									
Эорао. материал.									деро	x. 00	μαυ	a1. 1106	-ρ. (1 t <u>z</u> /	ι ιa <i>)</i> .								
Ісполнение инструмен	шта) II L	uaa '	TD C	nn [٦.	TD	<u> </u>		20Т	инами	Д Б	LICT	'n	now	,					
Тип хвостовика:		DIN6535			10.0	1121. 4			.01151		u01	/III awi/i	Ø	DIC.	ро	рсл	٠.		N/	IM		
THIT ABOUTOBHRA.		⊒ Цилиндр ⊒ Цилиндр											Ø							IM		
		 В Конус №											Номе	ь К.N	Λ.							
Необходим. вылет инструмен	нта:								ММ													
Гип развертки: 🔲 Ру	чная		Ma	ашин	ная			0:	хлаж	д.:		Внеш.	🔲 Вн	утр.				ba	r			MM
ополнительные свед Гип станка: Важим инструмента:			Tenn	мопа	трон				i I la	rob.	лй п	атрон				Све	опиг	15.81	лй п	атпо	н	
Прочее:	'-	пидро	. ор.	v.0.1.a	po	'		'-	ц	. 000		агроп				000	p,,,,,		2171 111	агро	•	
римечания от руки / эскизы:																						
			шП	ш	Ш			Ш			ШП				Ш	ШП	ШП		Ш	шП		
								-		###												

1. Фиксация инструмента

Для автоматических линий рекомендуется фиксировать цековку с укороченным конусом в державке. При этом предоставляется 2 возможности:

а) Фиксация крепежными винтами Art-Nr. 1648

Стопорный винт установить в корпус цековки и зажать в державке (Art.-Nr. 1629, 1630) двумя крепежными винтами.

b) Фиксация направляющей цапфы гайкой Art.-Nr. 1649

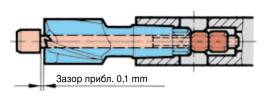
В данном случае направляющая цапфа фиксирует с помощью контргайки Art.-Nr. 1649 цековку с укороченным конусом в державке (Art.-Nr. 1629, 1630)

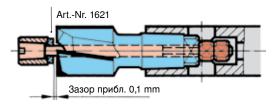


2. Установка направляющей цапфы

Посадочную поверхность d2 направляющей цапфы смазать, вставить в корпус цековки, привинтить гайки (кроме Art.-Nr. 1615), установить зазор и законтровать гайки. Направляющая цапфа должна в установленном положениии легко проворачиваться.

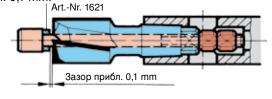
Установка направляющей цапфы Art.-Nr. 1615


В цековках Art.-Nr. 1602 и 1603, для укороченного конуса 0. Направляющая цапфа удерживается в корпусе цековки благодаря крепежному винту Art.-Nr. 1624

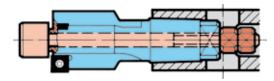

Установка направляющей цапфы Art.-Nr. 1616

а) в цековках Art.-Nr. 1601, 1602 и 1605,размер укороченного конуса 1-7.

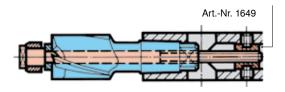
Эта направляющая цапфа должна быть установлена с парой гаек так, чтобы зазор между ней и цековкой с укороченным конусом составлял прибл. 0,1 мм.


b) в цековках с укороченным конусом Art.-Nr. 1603, 1604, 1606 В этих цековках с твердосплавными режущими кромками для их защиты подкладывают защитную шайбу Art.-Nr. 1621 с зазором прибл. 0,1 мм.

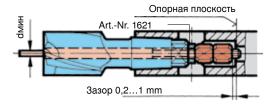
Установка направляющей цапфы Art.-Nr. 1617


а) во всех типах цековок с укороченным конусом кроме Art.-Nr. 1654.

В основном между инструментом и напр.цапфой подкладывается защитная шайба Art.-Nr. 1621. Зазор должен быть прибл. 0,1 mm.


2. Установка направляющей цапфы

b) в цековке со сменными пластинами Art.-Nr. 1654 В данном случае не устанавливается защитная шайба, т.к. на инструмент прикручивается специальная опорная поверхность для направляющей цапфы Исключение - установка цековки с укороченным конусом с меньшим размером цапфы (см.таблицу внизу).


Установка направляющей цапфы для крепления инструмента гайкой Art.-Nr. 1649 для всех типов цековок с укороченным конусом

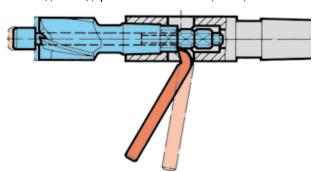
В державке резьбовая втулка (см. ниже) меняется на контргайку Art.-Nr. 1649. Цековка, как описано в п.3 вставляется в державку. Направляющая цапфа вместе с защитной шайбой ввинчивается и затягивается до упора.

Установка направляющей цапфы с размером цапфы (dмин) меньше размера отверстия.

Если устанавливается направляющая цапфа с d меньше минимального, между цековкой и гайкой подкладывают одну или несколько шайб Art.-Nr. 1621. Установка считается завершенной, если в зависимости от размера цековки остается зазор от 0,2 до 1 мм. С помощью этого осевое нажатие направляющей цапфы производится не цековкой, а державкой, т.о. предотвращается возможное повреждение режущей кромки.

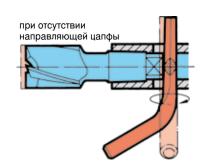
Значение минимального диаметра d_{min} мм направляющей цапфы.

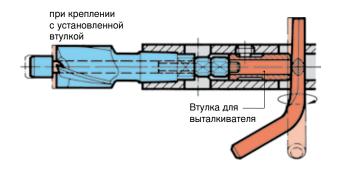
Номер конуса	Быстрореж. цековка	Твердоспл. цековка
1 2	4,5 6,0	6,5 8,5
3	7,0 9,0	9,5 12,0
5	11,0	15,0
5,5 6	12,0 14,0	18,0 19,0
/	17,0	22,0


3. Установка цековки с укороченным конусом в державку

Внутренний конус державки, также как конус цековки, должен быть тщательно отшлифован и перед использованием хорошо обезжирен. Жесткая напряженная посадка 2-го класса точности обеспечивается лишь тогда, когда и внутренний и внешний конус полностью обезжирены.

Цековка с укороченным конусом при установке в державку закручивается в правую сторону до упора. Закрепление достигается через сильный нажим державки на опору из древесины твердых пород, аллюминия или свинца.


4. Извлечение цековки с укороченным конусом из державки


а) с выталкивателем Art.-Nr. 1650, для цековок с укороченным конусом с направляющей цапфой. Подходит для выталкивания цековки с укороченным конусом с размерами конуса от 1 до 7 из державок Art.-Nr. 1625, 1626, 1627 и 1628.

b) с выталкивателем Art.-Nr. 1651

Подходит для выталкивания цековки с укороченным конусом с размерами конуса от 1 до 7 из державок Art.-Nr. 1625, 1626, 1627 и 1628, а также из державок Art.-Nr. 1629 и 1630.

Внутренняя крепежная резьба для цековок с конусом Морзе

конус Морзе	Внутренняя крепежная резьба по DIN228, часть 1, форма A
1	M6
2	M10
3	M12
4	M16

Внутренняя крепежная резьба для зенковок и цековок с укороченным конусом и с направляющей цапфой

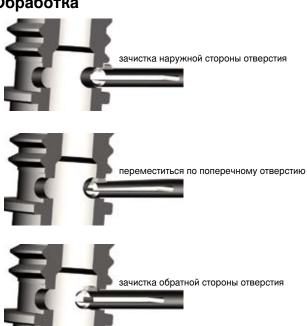
Ø- MM	Внутренняя крепежная резьба по DIN228, часть 1, форма A
≤ 8,50	нет
> 8	есть

Направляющие цапфы

К нашим зенковкам и цековкам со сменными направляющими цапфами необходимо заказать дополнительно сменные направляющие цапфы.

Крепление для обратного зенкера

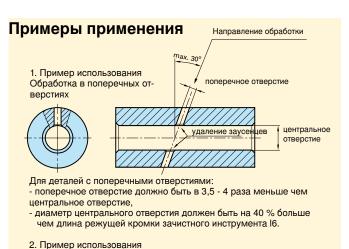
Наши обратные зенкеры крепятся благодаря байонетному замку.

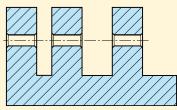

Принцип работы инструмента в виде зачистной вилки прост. Номинальный диаметр инструмента незначительно меньше, чем диаметр зачищаемого отверстия. Инструмент в зоне режущей части имеет продольный паз, и с помощью цапфы, которая находится на одной из наружных частей вилки, сжимаясь, направляется в отверстие. Когда эта цапфа в конце сквозного отверстия выходит из отверстия, вилка снова разжимается и точно позиционируется в отверстии. Благодаря длине продольного паза, а также определенного преднатяжения обеих частей вилки, задается давление, с помощью которого зачистная вилка прижимает заготовку.

Снаружи на инструменте находятся до трех режущих кромок, которые производят удаление заусенцев внутри отверстия. Их расположение и исполнение определяют, какую обработку может выполнить инструмент: только зачистить заусенцы или дополнительно сформировать фаску или радиус.

Преимущества:

- экономично, т.к. данный стандартный инструмент существенно дешевле по сравнению с прежними специальными решениями.
- универсальность применения: на инструментальных, фрезерных и токарных станках, а также в роботах. Кроме того, рабочий диапазон 0,25 мм позволяет использовать зачистной инструмент в отверстиях с соответственно большими допусками. Вы экономите ценное время и затраты на переналадку!
- увеличение производительности, т.к. зачистной инструмент EW 100 G выполняет зачистку машинным способом за один проход. Дорогая и затратная дополнительная работа вручную исключается.


Обработка


Машинная внутренняя и наружняя обработка с помощью зачистного инструмента EW 100 G является простой и экономичной альтернативой прежней, затратной дополнительной обработке вручную. При этом для всех операций используется только один инструмент.

Диапазон диаметров (мм)	Частота вращения (об/мин)
2 - 2,9	1000
3 - 3,9	960
4 - 4,9	940
5 - 5,9	900
6 - 6,9	880
7 - 8,1	860

Подача f: 0.1-0.2 мм/об.

Заготовка с многократно прерывистым отверстием

Универсальное применение:

Новый стандартный зачистной инструмент может обрабатывать детали как с поперечным отверстием, так и с многократно прерывистым отверстием. В любом случае результатом является хорошо зачишенная поверхность входа и выхода отверстия.

Обратите внимание, параметры резания являются ориентировочными значениями. Они могут изменяться как большую, так и в меньшую сторону.

и Зенков

Фирма Gühring первой предложила твердосплавный инструмент для удаления заусенцев на внутренних и наружых поверхностях. При этом процесс резания выполняется не так, как у обычных сверл, фрез, метчиков, разверток и зенковок. Этот инструмент производит очень аккуратное удаление заусенцев и обеспечивает, при необходимости, формирование фаски или радиуса.

Инструменты для снятия заусенцев в виде зачистной пики, бор-фрезы и с крутой зачистной спиралью являются специальными конструкциями, которые точно соответствуют конкретному случаю применения у наших заказчиков. Геометрия режущей кромки, число зубьев, покрытие, длина и диаметр инструмента, форма хвостовика и т.д. - все параметры могут выбираться и задаваться заказчиком. Твердосплавной зачистной инструмент для снятия заусенцев EW 100 G мы включили в нашу программу как стандартный инструмент.

Во то время, как процесс удаления заусенцев на входе и выходе отверстия не составляет проблемы, внутренняя зачистка пересекающихся отверстий во многих случаях затратная операция, которая выполняется вручную и требует много времени и затрат.

Для обеспечения качества заготовки, особенно при пересекающихся отверстиях - именно внутрення зачистка приобретает все большее значение. Например, это относится к каналам под СОЖ в современных высокопроизводительных двигателях, в которых оптимальное прохождение потока зависит от хорошей внутренней зачистки. Также, все больше требуется высокоточная зачистка фасок или радиусов в клапанных блоках, поворотных кронштейнах, вращающихся корпусах, приводных механизмах, насосфорсунках или тормозных цилиндрах.

С помощью нового разработанного и запатентованного твердосплавного инструмента для внутреннего удаления заусенцев фирма Gühring предоставляет возможность автоматизировать и рационализировать эту операцию благодаря высокопроизводительному инструменту. На выбор имеются три решения: инструмент для снятия заусенцев в виде зачистной вилки, бор-фрезы и с крутой спиралью. Для производства это означает не только значительную экономию времени и средств, но и прежде всего более высокое качество и надежность. Кроме того, для наружной зачистки имеются также зачистные бор-фрезы в специальном исполнении для заказчика.

Инструмент для снятия заусенцев EW 100 G

EW 100 G Зачистной инструмент с цапфой.

Принцип работы инструмента в виде зачистной вилки прост. Номинальный диаметр инструмента незначительно меньше, чем диаметр зачищаемого отверстия. Инструмент в зоне режущей части имеет продольный паз, и с помощью цапфы, которая находится на одной из наружных частей вилки, сжимаясь, направляется в отверстие. Когда эта цапфа в конце сквозного отверстия выходит из отверстия, вилка снова разжимается и точно позиционируется в отверстии. Благодаря длине продольного паза, а также определенного преднатяжения обеих частей вилки, задается давление, с помощью которого зачистная вилка прижимает заготовку.

Снаружи на инструменте находятся до трех режущих кромок, которые производят удаление заусенцев внутри отверстия. Их расположение и исполнение определяют, какую обработку может выполнить инструмент: только зачистить заусенцы или дополнительно сформировать фаску или радиус.

Зачистной инструмент EW 100 L

EW 100 L Зачистная бор-фреза с наклонными зубьями.

Диаметр этого инструмента значительно меньше чем сквозное отверстие и имеет с одной стороны выход для СОЖ. С помощью подачи СОЖ под высоким давлением из бокового выхода, зачистная головка отклоняется в сторону.

В зависимости от применения этого инструмента, могут формироваться различные режущие части для достижения необходимого результата при удалении заусенцев. Усилие прижатия режущей части к заготовке определяет давление СОЖ.

При данной конструкции стружка сразу выводится из отверстия, и в любое время возможно комбинирование данного метода с удалением заусенцев под высоким давлением (до 2000 бар).

Зачистная бор-фреза EW 100 F

EW 100 F Зачистная бор-фреза с разнонаправленными зубьями.

Для наружного удаления заусенцев фирма Gühring наряду с зачистным инструментом с отклоняющейся головкой, также предлагает зачистные бор-фрезы с разнонаправленными зубьями. Этот инструмент может быть изготовлен с различной геометрией режущих кромок, для обработки различных материалов и зачистки заусенцев на фасках или радиусах.

Инструмент с зачистной крутой спиралью EW 100 S

EW 100 S

Зачистной инструмент с крутой спиралью для обработки выходов из отверстия с острыми кромками.

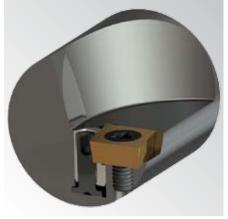
Данный специальный инструмент находит свое применение в том случае, если при удалении заусенцев необходимо обеспечить выход из отверстия с получением острой кромки, но без заусенца. В данном случае заусенец отделяется с помощью спирали с острой кромки и транспортируется из отверстия.

вспомогательны инструмент Система GM-300 является основой для проектирования разнообразных специальных инструментальных решений, предлагаемых компанией Gühring по

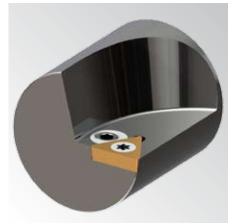
запросам клиентов. Некоторые примеры мы хотели бы Вам показать. Эти и другие инструменты мы охотно разрабатываем по запросу!

Использование клиновых винтов позволяет конструировать ступенчатый инструмент небольших диаметров для точной обработки. Их особым преимуществом является возможность простой установки сменных пластин с диапазоном регулирования от 0,3 мм на диаметр. В зависимости от места установки можно осуществлять осевую регулировку, также как и радиальную, благодаря чему настраивается общая

длина или диаметр. Клиновая опорная плоскость перемещает пластину при закручивании винта в устанавливаемом направлении (принудительная регулировка).


Небольшие размеры позволяют проектировать инструмент диаметром от 16 мм при размере пластины 06 (см. таблицу). При этом могут использоваться различные формы сменных пластин, как например, треугольная, ромбиче-

ская или квадратная. При соответствующих условиях эксплуатации можно производить многолезвийно ступенчатые отверстия точностью H7 за один проход без черновой обработки.


Число	от Ø инструмента						
зубьев	реж. пластина 06	реж. пластина 09	реж. пластина 12				
1	Ø 16 мм	Ø 29 мм	Ø 36 мм				
2	Ø 23 мм	Ø 33 мм	Ø 45 мм				
3	Ø 30 мм	Ø 45 мм	Ø 62 мм				

Просто: Монтаж и точная установка...

...однолезвийного инструмента со сменной пластиной...

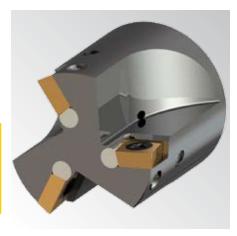
благодаря клиновому винту

осномогательны инструмент Для точной установки с помощью клиновой тяги компания Gühring предлагает 2 варианта крепления режущей пластины: в корпусе инструмента или в резцовой вставке. Обе системы выдерживают большие силы резания благодаря широкому прилеганию пластины к опорной поверхности клиновой тяги, гарантирующей надежную и свободную от внутренних напряжений посадку. Благодаря этому возможна

обработка с прерывистой или большой глубиной резания. Диапазон регулирования составляет 0,5 мм на диаметр.

Особым преимуществом использования резцовой вставки, является наличие регулирующей клиновой тяги в самой вставке.

При соответствующих условиях эксплуатации как при монтаже в корпусе,


так и при монтаже в резцовой вставке, можно проектировать комбинированный многоступенчатый инструмент для финишной обработки точных отверстий с допуском Н7 за один проход без предварительной черновой обработки.

Число	от Ø инструмента				
зубьев	реж. пластина 06	реж. пластина 09			
1	Ø 14 мм	Ø 22 мм			
2	Ø 20 мм	Ø 29 мм			
3	Ø 23 мм	Ø 33 мм			


Установка пластин СС и СР в посадочное гнездо корпуса

Lluoro avár on	от Ø инструмента						
Число зубьев	реж. пластина 06	реж. пластина 09	реж. пластина 12				
1	Ø 28 мм	Ø 40 мм	Ø 45 мм				
2	Ø 28 мм	Ø 40 мм	Ø 45 мм				
3	Ø 31 мм	Ø 44 мм	Ø 58 мм				

Установка пластин СС при помощи резцовых вставок

Установка в корпусе: Инструмент с тремя режущими кромками и креплением AKV

Исполнение с резцовыми вставками: Точная регулировка происходит...

...в посадочном гнезде резцовой вставки.

В частности, обработка седла клапана и направляющих на головке цилиндра относится к самым высокотребовательным задачам обработки в автомобильной промышленности. На основании высоких требований к круглости, точности геометрических форм и соосности классическим инструментом для такой обработки является однолейзвийная развертка, т.к. она благодаря своей большой стойкости обеспечивает требуемую высокую точность. Регулируемые сменные режущие пластины точного исполнения предназначены для обработки резанием, а сменные направляющие пластины точного исполнения предназначены для точного позиционирования инструмента в отверстии. Для оптимального и эффективного использования пластины изготовлены с двумя режущими кромками.

Пластина монтируется вместе с прихватом и винтом, а также с двумя клиновыми винтами для выставления пластины в посадочном гнезде. Первый винт для выставления диаметра с микронной точностью, второй для установки обратного конуса, адаптированного под соответствующие условия обработки.

C₂ M₃ N₄ 09₅ 03₆ 04₇

Пример

Форма пластины

ромбич., с углом при вершине 85°

ромбич., с углом при вершине 82°

ромбич., с углом при вершине 80°

ромбич., с углом при вершине 55°

ромбич., с углом при вершине 75°

шестиугольн., с углом при вершине 120°

ромбич., с углом при вершине 55°

прямоугольн., с углом при вершине 90°

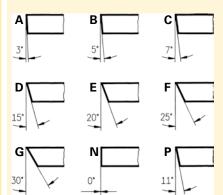
ромбич., с углом при вершине 86°

восьмиугольн., с углом при вершине 135°

пятиугольн., с углом при вершине 108°

круглые

квадратн., с углом при вершине 90°


трехугольн., с углом при вершине 60°

ромбич., с углом при вершине 35°

ломан. трехгр., с углом при вершине 80°

2

Задний угол

Точность изготовления

Допустимое отклонение в ± мм для:

толщ. пластины в впис.окруж. d контр.размера m

*) Допуск зависит от размера и формы пластины и может указываться отдельно в соответствии со стандарт. нормами для кажд. пластины

4

Тип пластин

Без стружколома, отверстие без фасок

Стружколом на передн. поверхностях, без отверстия

Стружколом на передн. поверхностях, отверстие без фасок

М Стружколом на передн. поверхности, отверстие без фасок

Без стружколома, без отверстия

О Без стружколома, отверстие с двумя фасками 4

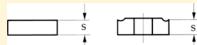
Тип пластин (продолжение)

Стружколом на передн. поверхности, без отверстия

Стружколом на передн. поверхности, отверстие с одной фаской

U Стружколом на передн. поверхностях, отверстие с двумя фасками

W Без стружколома, отверстие с одной фаской



X Специальное исполнение (по чертежу)

6

Толшина неперетачиваем. пластины ѕ

1.59 1.98 2.38 3.18 3.97 4.76

Число или


стины

буква для толщины неперетач. пла-

01 **T**1 02

03 **T3** 04

Радиус при вершине

MO Кругл. пластины (метрич.) Кругл. пластины (дюйм. система) 00 Острая вершина 02 0,2 мм 04 0,4 MM 80 0.8 мм 12 1,2 MM 16 1,6 MM 24 2,4 мм

3,2 мм

Радиус при вершине r

5

Длина режущей кромки I (мм)

Сравнение длины стороны "І" к внутр. окружности "d"

Вн. окружмм: Ø d дюйм:	3,968 5/32	4,762 3/16	5,556 7/32	6,35 1/4	7,938 5/16	9,525 3/8
	06	08	09	11	13	16
	-	04	05	06	07	09
d	-	-	-	06	07	09
	-	04	05	06	08	09
	-	05	06	07	09	11
	_	08	09	11	13	16

8

Исполнение режущей кромки

32

Е Реж. кромка округленная

F Реж. кромка острая

S Реж. кромка с фаской, округленная

Т Реж. кромка с фаск. (фаска на пер. поверх-и)

К Реж. кромка с 2-мя фасками

Р Реж. кромка с 2-мя фасками, округленная

9

Направление подачи

R Исполнение правое L Исполнение левое

N Исполнение нейтральное

